How to calculate the standard error estimation when using fit from curve fitting toolbox?
133 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Albert Bing
am 22 Jul. 2021
Beantwortet: Star Strider
am 22 Jul. 2021
Is is possible to calculate the standard error estimation when using fit from curve fitting toolbox as in polyfit?
Suppose I have 2 vector (x, y). Using polyfit and polyval gives the standard error estimation for all predictions.
How to calculate delta in fit? I need the prediction interval like examples below.
I assume the delta in polyval is not a scalar but varies with x. (Purhaps it is not?)
Example from the documention,
x = 1:100;
y = -0.3*x + 2*randn(1,100);
[p,S] = polyfit(x,y,1);
[y_fit,delta] = polyval(p,x,S);
plot(x,y,'bo')
hold on
plot(x,y_fit,'r-')
plot(x,y_fit+2*delta,'m--',x,y_fit-2*delta,'m--')
title('Linear Fit of Data with 95% Prediction Interval')
legend('Data','Linear Fit','95% Prediction Interval')
0 Kommentare
Akzeptierte Antwort
Star Strider
am 22 Jul. 2021
x = linspace(0, 100, 100);
y = -0.3*x + 2*randn(1,100);
[f,gof,out] = fit(x(:), y(:), 'poly1')
ci = predint(f, x);
figure
plot(f, x, y)
hold on
plot(x, ci, '--')
hold off
grid
hl = legend;
hl.String{3} = 'Lower 95% CI';
hl.String{4} = 'Upper 95% CI';
.
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Interpolation finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!