Classifying data using machine learning

3 Ansichten (letzte 30 Tage)
Dhruv Birla
Dhruv Birla am 14 Jul. 2021
Kommentiert: Dhruv Birla am 21 Jul. 2021
Using the fisheriris dataset in MATLAB, I want to use the first 30 datasets of each species for training and then predict the species of the other 20 based on the training data. I tried using the predict function, but it requires the training data vector and the prediction data vector to have the same dimensions. Is there a different function I can use that works the same way as the predict function and allows me to input vectors of varying sizes for training and prediction?
Here is the code I used:
N = size(meas,1);
newLabels = cell(90,1);
newLabels(1:30,1) = species(1:30,1);
newLabels(31:60,1) = species(51:80,1);
newLabels(61:90,1) = species(101:130,1);
trainData = cell(90,2);
trainData = str2double(trainData);
trainData(1:30,1) = meas(1:30,1);
trainData(31:60,1) = meas(51:80,1);
trainData(61:90,1) = meas(101:130,1);
trainData(1:30,2) = meas(1:30,2);
trainData(31:60,2) = meas(51:80,2);
trainData(61:90,2) = meas(101:130,2);
toPredict = cell(90,2);
toPredict = str2double(toPredict);
toPredict(1:30,1) = meas(21:50,1);
toPredict(31:60,1) = meas(71:100,1);
toPredict(61:90,1) = meas(121:150,1);
toPredict(1:30,2) = meas(21:50,2);
toPredict(31:60,2) = meas(71:100,2);
toPredict(61:90,2) = meas(121:150,2);
lda = fitcdiscr(trainData(:,1:2),newLabels);
ldaClass = predict(lda,toPredict);
ldaResubErr = resubLoss(lda);
figure
ldaResubCM = confusionchart(newLabels,ldaClass);

Akzeptierte Antwort

Hrishikesh Borate
Hrishikesh Borate am 21 Jul. 2021
Hi,
The following code uses the fisheriris dataset, where the first 30 instances of each class are used for training and the next 20 instances of each class are used for prediction.
load fisheriris.mat
N = size(meas,1);
newLabels = cell(90,1);
newLabels(1:30,1) = species(1:30,1);
newLabels(31:60,1) = species(51:80,1);
newLabels(61:90,1) = species(101:130,1);
trainData = cell(90,2);
trainData = str2double(trainData);
trainData(1:30,:) = meas(1:30,1:2);
trainData(31:60,:) = meas(51:80,1:2);
trainData(61:90,:) = meas(101:130,1:2);
toPredict = cell(60,2);
toPredict = str2double(toPredict);
toPredict(1:20,:) = meas(31:50,1:2);
toPredict(21:40,:) = meas(81:100,1:2);
toPredict(41:60,:) = meas(131:150,1:2);
toPredictLabels = cell(60,1);
toPredictLabels(1:20,1) = species(31:50,1);
toPredictLabels(21:40,1) = species(81:100,1);
toPredictLabels(41:60,1) = species(131:150,1);
lda = fitcdiscr(trainData(:,1:2),newLabels);
ldaClass = predict(lda,toPredict);
ldaResubErr = resubLoss(lda);
figure
ldaResubCM = confusionchart(toPredictLabels,ldaClass);

Weitere Antworten (0)

Produkte


Version

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by