Using the bisection method

1 Ansicht (letzte 30 Tage)
Aaron
Aaron am 22 Sep. 2013
I'm not sure if I used the bisection method correctly. Do I have to have two separate .m files? Is the code below okay?
T_o = 300;
T = 1000;
u_o = 1360;
q = 1.7e-19;
n_i = 6.21e9;
p_desi = 6.5e6;
N = [0 2.5e10];
n = @(N) 0.5*(N + sqrt(N.^2 + 4*n_i^2));
u = u_o*(T/T_o)^-2.42;
p = @(N) (1./(q*n(N)*u)) - p_desi;
hold on
plot(N,p(N))
x_l = 9.8e9;
x_u = 9e9;
for i = 1:1:100
x_r = (x_u+x_l)/2;
if ((p(x_l).*p(x_r)) < 0)
x_u = x_r;
else
x_l = x_r;
end
plot(x_r,p(x_r),'k-')
end
hold off
  2 Kommentare
Matt J
Matt J am 22 Sep. 2013
Bearbeitet: Matt J am 22 Sep. 2013
Can't you tell if it's working by testing it?
I hope this is homework, BTW. Otherwise, you are unnecessarily re-inventing the wheel. FZERO is already available for finding roots, and may do better than bisection.
Aaron
Aaron am 22 Sep. 2013
I did run it but the correct graph was a decreasing curved line. Mine is just a straight, decreasing line.
Its not really homework, just practice stuff for the homework to come. I am aware of the FZERO option, but just wanted to try this out.

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Kategorien

Mehr zu Fourier Analysis and Filtering finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by