What parameters are optimized by default when the crossval-on name-value pair option is used in the fitrensemble function?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
For eg, when the following command is used, what parameters/hyperparamters are validated by default when the crossval-on name-value pair option is used in the fitrensemble function?
rng(1);
t = templateTree('MaxNumSplits',1);
Mdl = fitrensemble(X,MPG,'Learners',t,'CrossVal','on');
0 Kommentare
Antworten (1)
Aditya Patil
am 12 Jul. 2021
Cross validation splits the data into K partitions. Then it trains the models on the K permutations of (K - 1) sets and validates it on the remaining 1 set. For example, if you use 10-fold validation, it will train on 9 different permutations of the sets, each having 9 sets for training, and 1 for validation.
As such, there is no dependence on the parameters of the model.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Regression Tree Ensembles finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!