How to solve a complicated equation?

5 Ansichten (letzte 30 Tage)
Cola
Cola am 7 Jul. 2021
Bearbeitet: David Goodmanson am 16 Jul. 2021
There is a Equation G. How to obtain the values of α and β when G=0?
G=-(-Omega^3*tau + (alpha + beta)*Omega)^2 - (Omega^2 - alpha*f)^2.
The answer:
alpha = Omega^2*cos(Omega*tau)/f;
beta = Omega*(f*sin(Omega*tau) - Omega*cos(Omega*tau))/f.
CAN anyone help me with this issue??? Thanks!!!
  4 Kommentare
Cola
Cola am 16 Jul. 2021
@Star Strider I obtain the values, and thank you very much for the help!!!
syms Omega tau alpha beta f
[ A, B ] = solve( [ -Omega^3*tau + (alpha + beta)*Omega == 0, Omega^2 - alpha*f == 0 ], [ alpha, beta ] )
Star Strider
Star Strider am 16 Jul. 2021
My pleasure!

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

David Goodmanson
David Goodmanson am 16 Jul. 2021
Bearbeitet: David Goodmanson am 16 Jul. 2021
Hi Cola,
Since there is one equation and two unknowns, it must be possible to define, say, beta in terms of alpha, where alpha can be anything. For G = 0 we have
(-Om^3*t + (a+b)*Om)^2 = -(Om^2 - a*f)^2
so
-Om^3*t + (a+b)*Om = +-*i*(Om^2 - a*f)
where there are obvious notational substitutions for Omega, tau, alpha, beta, and the +- choice gives two different solutions. Solving for b,
b = (1/Om)*( Om^3*t -a*Om +-i*(Om^2 - a*f) )
where 'a' can be anything. Solving instead for a (this does not give a different family of solutions, rather the same ones expressed differently) gives
a = (Om^3*t +-i*Om^2 -b*Om)/(Om +-i*f)
Here the sign in the denominator (+ or -) has to match the sign in the denominator, and b can be anything. The choice b = 0 gives the solutions from Star Strider.
  1 Kommentar
Cola
Cola am 16 Jul. 2021
I really thank you and sincerely wish you all the best.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by