Sketch the graph using matlab

4 Ansichten (letzte 30 Tage)
Ta Duc
Ta Duc am 5 Jul. 2021
Kommentiert: Ta Duc am 5 Jul. 2021
Draw the graph of f and its tangent plane at the given point. (Use your computer algebra system both to compute the partial derivatives and to graph the surface and its tangent plane.) Then zoom in until the surface and the tangent plane become indistinguishable. f(x, y)=[xy sin(x-y)]/[1+x^2+y^2], and the given point(1, 1, 0)
  2 Kommentare
KSSV
KSSV am 5 Jul. 2021
What have you attempted?
Ta Duc
Ta Duc am 5 Jul. 2021
I’ve just finished my hand-written solving but i’m not good at matlab so i need you to solve the problem by using matlab. Thank u so much🥰

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Scott MacKenzie
Scott MacKenzie am 5 Jul. 2021
Bearbeitet: Scott MacKenzie am 5 Jul. 2021
I think this is what you are looking for. NOTE: My script is based on code in Find Tangent Plane to Surface which you should review for further details.
% function domain
x = -3:0.25:3;
y = -3:0.25:3;
% your function
f = @(x,y) (x .* y .* sin(x-y)) ./ (1 + x.^2 + y.^2);
% use gradient to find partial derivatives of f.
[xx, yy] = meshgrid(x,y);
[fx, fy] = gradient(f(xx,yy), 0.25);
% find tangent plane at query point of interest
xq = 1;
yq = 1;
t = (xx == xq) & (yy == yq);
indt = find(t);
fxq = fx(indt);
fyq = fy(indt);
% plot the function over domain
surf(xx,yy,f(xx,yy),'EdgeAlpha',0.7,'FaceAlpha',0.9)
hold on;
xlabel('X'); ylabel('Y'); zlabel('Z');
% tangent plane equation and points
z = @(x,y) f(xq,yq) + fxq*(x-xq) + fyq*(y-yq);
zz = z(xx,yy);
% plot tangent plain and point-of-intersection
surf(xx,yy,zz);
plot3(1,1,f(1,1), 'or', 'markerfacecolor', 'r', 'markersize', 5);
  1 Kommentar
Ta Duc
Ta Duc am 5 Jul. 2021
@Scott MacKenzie Thank u so much. I'm very appriciate with your code. <3

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Produkte


Version

R2017b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by