LSSVM LAB Performance Metrics

6 Ansichten (letzte 30 Tage)
maryam hatami
maryam hatami am 30 Jun. 2021
Bearbeitet: Amr Embaby am 26 Aug. 2023
Hello,
I am using LSSVMLAB to implement Least Square Support Vector Machine Algorithm.
I need to determine the accuracy, FPR, FNR, and other performance metrics results. How can I find them?
This is a code, getting some performance metrics, but it gets more than 1 value for each! It gives the result for each threshold.(For example, for 100 thresholds in ROC, it gets 100 TP results)
[area, se, thresholds, oneMinusSpec, sens, TN, TP, FN, FP] = roc(Y_latent,Y);

Akzeptierte Antwort

maryam hatami
maryam hatami am 3 Jul. 2021
I found the answer. All metrics are evaluated from TP, FP, TN, FN getting from the data:
len =length(Yt);
TP = 0;
FP = 0;
TN = 0;
FN = 0;
for i=1:len
if Yt(i)==Yvalid(i)==1
TP=TP+1;
end
if (Yvalid(i)==1) && (Yt(i)~=Yvalid(i))
FP=FP+1;
end
if (Yt(i)==Yvalid(i)==0)
TN=TN+1;
end
if (Yvalid(i)==0) && (Yt(i)~=Yvalid(i))
FN=FN+1;
end
end
TN
FP
FN
TP
fprintf(1,'Precision: %2.2f\n',100*sum(TP)/(TP+FP));
fprintf(1,'Recall: %2.2f\n',100*sum(TP)/(TP+FN));
fprintf(1,'F1_Score: %2.2f\n',2*(prc*recall)/(prc+recall));
fprintf(1,' FPR: %2.2f\n',100*(FP)/(TN+FP));
fprintf(1,' FNR: %2.2f\n',100*(FN)/(TP+FN));
fprintf(1,' TNR: %2.2f\n',100*(TN)/(TN+FP));
fprintf(1,'Accuracy: %2.2f\n',100*(TP+TN)/(TN+TP+FN+FP));
  1 Kommentar
Amr Embaby
Amr Embaby am 26 Aug. 2023
Bearbeitet: Amr Embaby am 26 Aug. 2023
i'm trying to use robustLssvm function but i get that error :
SWITCH expression must be a scalar or a character vector.
Error in weightingscheme (line 9)
switch wfct Error in Roboustlssvm (line 74)
w = weightingscheme(casses,model.weights,delta);
do you know how to solve it?
my code:
type = 'function estimation';
[Yp,alpha,b,gam,sig2,model] = lssvm(fts_tle_si_x_wz_2_tra_nrm_mtx,tgs_tle_si_x_wz_2_tra.b,type);
model = tunelssvm(model, 'gridsearch','leaveoneoutlssvm', {'mse'});
model = robustlssvm(model);

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu MATLAB finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by