how can i solve this problem with rk4 method?

1 Ansicht (letzte 30 Tage)
jameslk
jameslk am 16 Jun. 2021
Beantwortet: Alan Stevens am 16 Jun. 2021
In this case, m=20, k=20, c=40 and initial x=1, initial v=0, t is 0 to 15. please tell me what's wrong in my code
This is my code when 'c=40' please tell me what's wrong in it
f=@(t,x,v) -0.25*v -x; %dvdt
g=@(t,x,v) v; %dxdt
t0=1;
tl=15;
h=0.1;
n=(tl-t0)/h;
T=t0:h:tl;
X=zeros(1,n+1);
V=zeros(1,n+1);
X(1)=1;
V(1)=0;
for j = 1: n
k1f = f(T(j),X(j),V(j));
k1g = g(T(j),X(j),V(j));
k2f = f(T(j)+h/2,X(j)+k1g*h/2,V(j)+k1f*h/2);
k2g = g(T(j)+h/2,X(j)+k1g*h/2,V(j)+k1f*h/2);
k3f = f(T(j)+h/2,X(j)+k2g*h/2,V(j)+k2f*h/2);
k3g = g(T(j)+h/2,X(j)+k2g*h/2,V(j)+k2f*h/2);
k4f = f(T(j)+h,X(j)+k3g*h,V(j)+k3f*h);
k4g = g(T(j)+h,X(j)+k3g*h,V(j)+k3f*h);
X(j+1)= X(j) + (k1g + 2*k2g + 2*k3g + k4g)/6;
V(j+1)= V(j) + (k1f + 2*k2f + 2*k3f + k4f)/6;
end
plot(T,V)

Akzeptierte Antwort

Alan Stevens
Alan Stevens am 16 Jun. 2021
If m=20, k=20, c=40 then function f should be f = -(c/m)*v - k/m
f=@(t,x,v) -2*v -x; %dvdt

Weitere Antworten (0)

Kategorien

Mehr zu Mathematics finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by