curve fit the function
12 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am trying to curve fit the following equation with parameters d, D, Ar, Tr each of them bounded in some range. The physical constants are: gamma = 26.76E7, n = 6.59E28, Ad = 2.099E-20
The equation is broken into several parts -
w1=2*pi*x
z1=(2*w1*d^2/D)^0.5
w2=2*w1
z2=(2*w2*d^2/D)^0.5
J1=((1+5*z1/8+z1^2/8)/(1+z1+z1^2/2+z1^3/6+z1^5/81+z1^6/648))
J2=((1+5*z2/8+z2^2/8)/(1+z2+z2^2/2+z2^3/6+z2^5/81+z2^6/648))
R1_diff = Ad*(J1+4*J2)/(d*D)
R1_rot = Ar*(Tr/(1+w1^2*Tr^2)+4*Tr/(1+(w2)^2*Tr^2))
R1_IL = R1_diff + R1_rot
finally
return R1_IL
#Experimental x and y data points
xData = [2.00E+07,1.42E+07,1.01E+07,7.16E+06,5.09E+06,3.61E+06,2.57E+06,1.82E+06, ...
1.29E+06,9.20E+05,6.53E+05,4.63E+05,3.29E+05,2.34E+05,1.66E+05,1.18E+05, ...
8.39E+04,5.96E+04,4.24E+04,3.00E+04];
yData = [1.90E+01,2.11E+01,2.38E+01,2.66E+01,2.97E+01,3.26E+01,3.46E+01,3.70E+01, ...
3.84E+01,4.00E+01,4.12E+01,4.22E+01,4.33E+01,4.39E+01,4.48E+01,4.54E+01, ...
4.65E+01,4.64E+01,4.67E+01,4.67E+01];
and the bound parameters are
d = [2.00E-10, 3.5E-10], D = [3.0E-12, 4.00E-12], Ar = [3.00E9, 3.8E9], Tr = [5.00E-19, 6.9E-10]ll
I need to get the parameter values that will minimize the function and curve fit the plot of R1 vs x in loglog scale.
1 Kommentar
Antworten (0)
Siehe auch
Kategorien
Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!