sine curve fitting by recursive method
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
MUHAMMAD SULEMAN
am 13 Jun. 2021
Kommentiert: Mathieu NOE
am 18 Jun. 2021
Find sine regression of periodic signal.
I have long period so I decomposed it in to small signals
Frequency = 50; % hertz
StopTime = 1/Frequency; % seconds
FittingTime = (0:dt:StopTime-dt)'; % seconds
%%Sine wave:
FittingVoltage = sin(2*pi*Fc*FittingTime);
Then I want to do curve fitting by recursive method. whereas
RangeOfVector= 5
for i = 0:1/Frequency:RangeOfVector
iter(i)=min(TrainTime):(1/Frequency):max(TrainTime)
end
This should process [x 0 0 0 0] then [0 x 0 0 0] then [0 0 x 0 0] and so on
0 Kommentare
Akzeptierte Antwort
Mathieu NOE
am 16 Jun. 2021
hello
this is a little demo you can adapt to your own needs ...
clc
clearvars
close all
% dummy signal (sinus + noise)
dt = 1e-4;
samples = 1000;
f = 50;
t = (0:samples-1)*dt;
s = 0.75*sin(2*pi*f*t) + 0.1 *rand(1,samples);
%%%%%%%%%%%%% main code %%%%%%%%%%%%%%%%%
ym = mean(s); % Estimate offset
yu = max(s);
yl = min(s);
yr = (yu-yl); % Range of ‘y’
yz = s-ym;
yzs = smoothdata(yz,'gaussian',25); % smooth data to remove noise artifacts (adjust factors)
zt = t(yzs(:) .* circshift(yzs(:),[1 0]) <= 0); % Find zero-crossings
per = 2*mean(diff(zt)); % Estimate period
fre = 1/per; % Estimate FREQUENCY
% stationnary sinus fit
fit = @(b,x) b(1) .* (sin(2*pi*x*b(2) + b(3))) + b(4); % Objective Function to fit
fcn = @(b) norm(fit(b,t) - s); % Least-Squares cost function
B = fminsearch(fcn, [yr/2; fre; 0; 0;]); % Minimise Least-Squares
amplitude = B(1)
frequency_Hz = B(2)
phase_rad = B(3)
DC_offset = B(4)
xp = linspace(min(t),max(t),samples);
yp = fit(B,xp);
figure(1),
plot(t, s, 'db',xp, yp, '-r')
legend('data + noise','model fit');
4 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!