how do i clasiify non linearly separable data using unsupervised classification methods like k-means?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
for example, iris data set, in which class 2 and 3 are not linearly separable as to class 1 which is linearly separable. Hence this often results in class 2 and 3 getting misclassified as 3 and 2 respectively.
what can be done in such a situation of non linearity between classes for iris and other similar data sets?
i am using k-means function and I am providing it with optimal cluster center's which i generated using global optimization technique.
0 Kommentare
Antworten (1)
Shashank Prasanna
am 26 Aug. 2013
KMEANS function in the Statistics Toolbox returns the 4 centeroids. You can compute the distance between an new point and each of the centrioids. The smallest distance will suggest that your data will belong to that cluster.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Statistics and Machine Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!