How does one use integral2 (double integral) symbolically?
48 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Mikayel
am 22 Aug. 2013
Bearbeitet: Walter Roberson
am 14 Mai 2024
I would like to get some help on how to use the integral2 symbolically?
E.g. I have a Joint PDF function -> "@(x,y) exp(-(x+y))"
To verify that it adds up to one, I did the following -> "integral2(pdf,0,inf,0,inf)" with the result being 1 as expected.
Now to calculate the Joint CDF symbolically I defined x and y as symbols and tried to do -> "cdf=@(u,v) exp(-(u+v))" and "integral2(cdf,0,x,0,y)". The error I got was -> "Error using integral2. XMAX must be a floating point scalar."
What I want to get is -> "(1-exp(-y))*(1-exp(-x))" !!
Your help will be much appreciated.
1 Kommentar
Dipak kumar Panigrahy
am 21 Mai 2020
clear
clc
syms rtstar
syms rt1 v delta R do %or assign numeric values to the variables
p=10;
cdf1=p*tan(delta)*R^2;
cdf2=p*tan(delta)*R^2;
eqn = ss == (int(int(cdf1,rt,rt1,rtstar),e,0,v)-int(int(cdf2,rt,rtstar,rt2),e,0,v));
sol = solve(eqn, rtstar)
can ayone tell me how to solve this eqn?
Akzeptierte Antwort
Shashank Prasanna
am 22 Aug. 2013
From the documentation of integral2:
integral2
Numerically evaluate double integral
It is not meant for symbolic computation. If you are interested in symbolic results you need to have Symbolic Toolbox installed
Then you can use the int function:
3 Kommentare
Shashank Prasanna
am 23 Aug. 2013
Bearbeitet: Shashank Prasanna
am 23 Aug. 2013
Sir, you have to use functions from the Symbolic Toolbox.
>> syms u v
>> cdf = exp(-(u+v))
>> int(int(cdf,v,0,v),u,0,u)
Weitere Antworten (1)
Okae
am 14 Mai 2024
Bearbeitet: Walter Roberson
am 14 Mai 2024
how do i type j=\iint\of V_s\ [f\left(\varepsilon_{\left(\left(p+q\right)\right)}-f\left(\varepsilon_p\right)\delta\left(\varepsilon_{\left(\left(p+q\right)\right)}-\varepsilon_p-\hbar\omega q\right)\right]dp_{\left(x\right)d}p_y
in symbolic math toolbox?
0 Kommentare
Siehe auch
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!