How to find the zero crossing in x and time data sets?
272 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
vimal kumar chawda
am 9 Jun. 2021
Bearbeitet: Stefan Schuberth
am 27 Jul. 2022
How can I find the zero crossing in the data sets?
figure()
plot(x,t)
3 Kommentare
Akzeptierte Antwort
Scott MacKenzie
am 9 Jun. 2021
Bearbeitet: Scott MacKenzie
am 10 Jun. 2021
Here's what I put together. The variable fCross is what you are looking for.
% data from posted matlab.mat files
f = readmatrix('testdata1.txt');
t = readmatrix('testdata2.txt');
tiledlayout(3,1);
nexttile;
plot(t,f);
hold on;
axis([1 10 -1.2 1.2]);
nexttile;
fAbove = f .* (f >= 0);
fBelow = f .* (f <= 0);
area(t, fAbove, 'FaceColor', 'r');
hold on;
area(t, fBelow, 'FaceColor', 'g');
axis([1 10 -1.2 1.2]);
nexttile;
fCrossRaw = find(diff(fAbove>0));
fCross = fCrossRaw ./ length(t)*10; % as per axes
plot(fCross, zeros(1,length(fCross)), '*r');
hold on;
axis([1 10 -1.2 1.2]);
xline(fCross, 'color', [.7 .7 .7]);
yline(0, 'color', [.7 .7 .7]);
2 Kommentare
Scott MacKenzie
am 10 Jun. 2021
@vimal kumar chawda You're welcome. I just updated my answer to make the 3rd plot look a bit better.
Weitere Antworten (2)
Stefan Schuberth
am 27 Jul. 2022
Bearbeitet: Stefan Schuberth
am 27 Jul. 2022
If you have (x,y) data and want to do it without using loops try that:
i=find(y(1:end-1).*y(2:end)<0); % index of zero crossings
m=(y(i+1)-y(i))./(x(i+1)-x(i)); % slope
x0=-y(i)./m+x(i); % x coordinates of zero crossings linear interpolated
0 Kommentare
Joel Lynch
am 9 Jun. 2021
Bearbeitet: Joel Lynch
am 9 Jun. 2021
idx = find( f(2:end).*f(1:end-1)<0 )
Will return the left-hand indicies of cross-over points.
To get the exact X-values where the cross-over occurs, you would have to do some linear intepolation (inverted)
t_zero = zeros(size(idx));
for i=1:numel(idx)
j = idx(i); % Need both the index in the idx/t_zero vector, and the f/t vector
t_zero(i) = interp1( f(j:j+1), t(j:j+1), 0.0, 'linear' );
end
Note: this will fail if the cross-over happens on the last i value (i+1 would extend outside the range of the dataset)
4 Kommentare
Scott MacKenzie
am 11 Jun. 2021
Bearbeitet: Scott MacKenzie
am 29 Jun. 2021
Yes, Joel's code gives the exact cross-over point. Bear in mind, however, that this is exact for the linearly interpolated data. The actual data are empirical, so it is not possible to know the exact cross-over point.
It probably doesn't matter much in this case, since the data appear to be gathered at a high sampling rate.
Siehe auch
Kategorien
Mehr zu Surface and Mesh Plots finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!