How to adjust initial condition to nondimensionalization of coupled ODE?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Here is the code for dimenional and non-dimensional form of coupled ODEs using ode45, but both results are not agreeing. Please help me in this regard.
close all;clear all;clc;
options = odeset('RelTol',1e-2,'AbsTol',[1e-2 1e-2]);
[T,Y] = ode45(@cbyjw_d,[0 30],[90000, 6000],options);
r = 4;
K = 1000000;
beta = 0.0002;
delta = 0.8;
[T1,Y1] = ode45(@cbyjw_nd,[0 30],[90000/K, 6000*(beta/r)],options);
figure(1);
plot(T,Y(:,1),'b-',T,Y(:,2),'b-.');
hold on;
plot(T1,Y1(:,1),'g-',T1,Y1(:,2),'g-.');
function dy = cbyjw_d(t,y)
dy = zeros(2,1);
A = 0;
r = 4;
K = 1000000;
beta = 0.0002;
alpha = 4e-6;
delta = 0.6;
gamma_B = 130;
gamma_W = 40;
dy(1) = r*y(1)*(1-y(1)/K)-beta*y(1)*y(2)-gamma_B*A*y(1);
dy(2) = alpha*y(1)*y(2)-delta*y(2)-gamma_W*A*y(2);
end
function dy = cbyjw_nd(t,y)
dy = zeros(2,1);
A = 0.02;
r = 4;
K = 1000000;
beta = 0.0002;
alpha = 4e-6;
delta = 0.8;
gamma_B = 130;
gamma_W = 40;
theta = (gamma_B*A)/r;
phi = (gamma_W*A*delta)/beta;
sigma = delta*alpha*K/beta;
exi = delta^2/beta;
dy(1) = y(1)*(1-y(1))-y(1)*y(2)-theta*y(1);
dy(2) = sigma*y(1)*y(2)-exi*y(2)-phi*y(2);
end
Thanks
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!