Area between two curves without intersection

3 Ansichten (letzte 30 Tage)
Crocola Cool
Crocola Cool am 31 Mai 2021
Bearbeitet: Paul am 1 Jun. 2021
Hi everyone.
I would like to calculate the area between two curves (see attachment).
I have used the trapz and polyarea function but these do not work because the curves are superimposed on each other without intersection.
Could someone please help me?
x=[0,-1.66128688049154,-3.71843384492024,-6.03903044153544,-8.52179344691878,-11.0684783490837,-13.5546470968919,-15.8324222826000,-17.7183932651871,-19.0241469744085,-19.5928500159198,-19.2715861063891,-18.0007426019886,-15.8645181604802,-13.1050363442789,-10.1023488165208,-7.36091774112053,-5.20617947547990,-3.73171179000825,-2.80200973068434,-2.17303027950468,-1.64687923319577,-1.14657359693582,-0.683525804975150,-0.261378364022391,0.167766706401400,0.646305657504070,1.13828938838504,1.49690490570653,1.50928713174259,0.991312332299208];
y=[0,3.80978510632932,8.62533289690098,13.7146367945814,18.4791657883180,22.5818350036559,26.0354921546852,29.1006123032565,31.9144606689929,33.8206797037834,33.4764658683987,29.5025727265991,21.5010392613040,10.9350767496541,13.3409505060801,18.4784450622125,22.0669438223010,22.8065275890501,20.8225751873008,17.4709163499800,14.5397350670517,13.2179835701845,13.4862976982229,14.3068759442281,14.3461752980756,12.9833980247855,10.3519556168192,7.26333666757206,4.38583660003191,2.05034193641872,0.472418853310666];

Antworten (2)

darova
darova am 31 Mai 2021
Make sure curves have the same start and end
xx = linspace(x1(1),x1(end),100); % new mesh
y11 = interp1(x1,y1,xx); % interpolate curve1
y22 = interp1(x2,y2,xx); % interpolate curve2
A = trapz(xx,abs(y22-y11)); % calculate positive area
  2 Kommentare
Torsten
Torsten am 31 Mai 2021
x and y are not two different curves, but one curve given in a (x,y) representation (like e.g. (x,y) = (cos(t),sin(t)) for a circle)
Crocola Cool
Crocola Cool am 31 Mai 2021
#Darova
Thanks for your feedback but it doesn't work with your proposal. You should not separate the x and y data. this said, (x,y).
#code
x=[0,-1.66128688049154,-3.71843384492024,-6.03903044153544,-8.52179344691878,-11.0684783490837,-13.5546470968919,-15.8324222826000,-17.7183932651871,-19.0241469744085,-19.5928500159198,-19.2715861063891,-18.0007426019886,-15.8645181604802,-13.1050363442789,-10.1023488165208,-7.36091774112053,-5.20617947547990,-3.73171179000825,-2.80200973068434,-2.17303027950468,-1.64687923319577,-1.14657359693582,-0.683525804975150,-0.261378364022391,0.167766706401400,0.646305657504070,1.13828938838504,1.49690490570653,1.50928713174259,0.991312332299208];
y=[0,3.80978510632932,8.62533289690098,13.7146367945814,18.4791657883180,22.5818350036559,26.0354921546852,29.1006123032565,31.9144606689929,33.8206797037834,33.4764658683987,29.5025727265991,21.5010392613040,10.9350767496541,13.3409505060801,18.4784450622125,22.0669438223010,22.8065275890501,20.8225751873008,17.4709163499800,14.5397350670517,13.2179835701845,13.4862976982229,14.3068759442281,14.3461752980756,12.9833980247855,10.3519556168192,7.26333666757206,4.38583660003191,2.05034193641872,0.472418853310666];
time=[10,39,69,99,129,158,188,218,248,277,307,337,367,397,426,456,486,516,545,575,605,635,665,694,724,754,784,813,843,873,903];
figure(1)
plot(x,y,'-x');
tq=min(time):1:max(time);
interp_x = interp1(time,x,tq);
interp_y= interp1(time,y,tq);
figure(2)
plot(interp_x,interp_y,'-O')
A=trapz(tq,abs(interp_y-interp_x))

Melden Sie sich an, um zu kommentieren.


Paul
Paul am 31 Mai 2021
I think this is what you're looking for:
x=[0,-1.66128688049154,-3.71843384492024,-6.03903044153544,-8.52179344691878,-11.0684783490837,-13.5546470968919,-15.8324222826000,-17.7183932651871,-19.0241469744085,-19.5928500159198,-19.2715861063891,-18.0007426019886,-15.8645181604802,-13.1050363442789,-10.1023488165208,-7.36091774112053,-5.20617947547990,-3.73171179000825,-2.80200973068434,-2.17303027950468,-1.64687923319577,-1.14657359693582,-0.683525804975150,-0.261378364022391,0.167766706401400,0.646305657504070,1.13828938838504,1.49690490570653,1.50928713174259,0.991312332299208];
y=[0,3.80978510632932,8.62533289690098,13.7146367945814,18.4791657883180,22.5818350036559,26.0354921546852,29.1006123032565,31.9144606689929,33.8206797037834,33.4764658683987,29.5025727265991,21.5010392613040,10.9350767496541,13.3409505060801,18.4784450622125,22.0669438223010,22.8065275890501,20.8225751873008,17.4709163499800,14.5397350670517,13.2179835701845,13.4862976982229,14.3068759442281,14.3461752980756,12.9833980247855,10.3519556168192,7.26333666757206,4.38583660003191,2.05034193641872,0.472418853310666];
plot(x,y,'-+')
p=polyshape(x,y);
Warning: Polyshape has duplicate vertices, intersections, or other inconsistencies that may produce inaccurate or unexpected results. Input data has been modified to create a well-defined polyshape.
plot(p)
p.area
ans = 202.0491
  8 Kommentare
Torsten
Torsten am 1 Jun. 2021
I'd estimate the length of the big region as 10 and its height as 4, and 10x4 = 40. So no, the area of this example will be much smaller than the area for the first one.
Paul
Paul am 1 Jun. 2021
Bearbeitet: Paul am 1 Jun. 2021
Plotting both shows that area in example 2 is much smaller than in example 1.
x1=[0,-1.66128688049154,-3.71843384492024,-6.03903044153544,-8.52179344691878,-11.0684783490837,-13.5546470968919,-15.8324222826000,-17.7183932651871,-19.0241469744085,-19.5928500159198,-19.2715861063891,-18.0007426019886,-15.8645181604802,-13.1050363442789,-10.1023488165208,-7.36091774112053,-5.20617947547990,-3.73171179000825,-2.80200973068434,-2.17303027950468,-1.64687923319577,-1.14657359693582,-0.683525804975150,-0.261378364022391,0.167766706401400,0.646305657504070,1.13828938838504,1.49690490570653,1.50928713174259,0.991312332299208];
y1=[0,3.80978510632932,8.62533289690098,13.7146367945814,18.4791657883180,22.5818350036559,26.0354921546852,29.1006123032565,31.9144606689929,33.8206797037834,33.4764658683987,29.5025727265991,21.5010392613040,10.9350767496541,13.3409505060801,18.4784450622125,22.0669438223010,22.8065275890501,20.8225751873008,17.4709163499800,14.5397350670517,13.2179835701845,13.4862976982229,14.3068759442281,14.3461752980756,12.9833980247855,10.3519556168192,7.26333666757206,4.38583660003191,2.05034193641872,0.472418853310666];
x2=[0,-1.58143962981297,-3.03392588365747,-4.31293028513336,-5.43316939640765,-6.43266612032772,-7.34751230187266,-8.19610716571275,-8.97053149511526,-9.63779510279898,-10.1519335567333,-10.4585616901778,-10.5342395749024,-10.3758946306706,-9.98217498098106,-9.34944176705073,-8.47251867761138,-7.35956551245431,-6.05095668830785,-4.62502866942295,-3.18355609435549,-1.82611854945020,-0.611557284260889,0.477054737792964,1.47779860348098,2.40953293828952,3.22796956291444,3.81329910953911,4.00379047888411,3.66637669160807,2.77294873115999,1.43501593689118];
y2=[0,-0.0914589891686976,-0.169258183169858,-0.137641932843007,0.115356308463203,0.650321396134900,1.44445426860180,2.40398635583359,3.39379566406802,4.25865376154095,4.84684849930363,5.03502448735570,4.83627564548227,4.37126677838120,3.80309691225722,3.29016826646019,2.94696153078223,2.83659552454877,2.98508831160315,3.38247203682421,3.96326780273134,4.58673760893439,5.02975831885881,5.09870485313676,4.70518969374756,3.90891301840727,2.89444462683932,1.89004771352925,1.07492003950258,0.526156770959942,0.222079396840722,0.0776605885521645];
plot(x1,y1,'-x',x2,y2,'-o'),grid

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Elementary Polygons finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by