Error in Principal Component Analysis (PCA) matlab

13 Ansichten (letzte 30 Tage)
nurin noor
nurin noor am 31 Mai 2021
Kommentiert: nurin noor am 31 Mai 2021
Error in Principal Component Analysis (PCA) matlab. I applied PCA on matlab using my variable fextracted. It is a 22 x 16 array . I only have fextracted as the information. Please help me with the steps to do PCA. Attached are my data (fextracted) and my PCA code. I dont understand what should i do first before using the PCA() function on MATLAB. Ive seen tutorials and read from matlab PCA docs but i did not manage to figure it out.

Akzeptierte Antwort

Cris LaPierre
Cris LaPierre am 31 Mai 2021
You are getting this error because you have overwritten MATLAB's pca function with your pca.m file. Rename your file, and your call to pca should work.
See here for execution precedence.
  3 Kommentare
Cris LaPierre
Cris LaPierre am 31 Mai 2021
The error message suggests otherwise. Run the following code in the command window
which pca
The result should be something like this: C:\Program Files\MATLAB\R2021a\toolbox\stats\stats\pca.m
Your syntax is correct.
fextracted = rand(22,16);
[coeff,score,latent,tsquared,explained] = pca(fextracted)
coeff = 16×16
-0.0414 0.4172 0.1205 0.2871 0.6193 -0.0735 0.1129 0.1205 0.1097 0.2141 0.0162 0.3444 0.0827 -0.1396 -0.2588 0.2025 -0.2079 0.0292 0.1624 0.5370 -0.2892 0.0452 0.1042 -0.0634 -0.2043 0.2314 0.3456 0.2450 0.0994 -0.1214 0.4364 -0.2254 -0.1059 -0.1846 0.2349 -0.0497 -0.1560 -0.0855 0.4983 0.3462 -0.2047 0.3313 0.0175 -0.3634 -0.0127 -0.0893 -0.1031 0.4410 0.4788 0.0664 -0.2710 0.1164 -0.3339 -0.0306 -0.0870 0.1993 0.0728 0.0753 -0.1985 0.0602 0.4072 -0.5384 -0.0948 0.0333 0.1765 0.3922 0.0863 -0.2889 0.0492 -0.3856 0.0676 -0.0057 0.1444 -0.2174 0.5058 -0.2350 0.2481 -0.0124 0.3428 0.1003 0.3360 -0.2255 0.0197 0.2778 -0.0181 0.0308 0.1925 -0.3264 0.6195 0.1211 -0.0611 -0.0089 -0.1684 0.1507 0.2419 0.3193 -0.4205 0.0812 0.1869 0.0098 -0.1779 -0.2231 0.0484 0.0416 0.5401 0.1567 -0.2317 -0.1885 0.3183 0.0822 -0.1787 -0.3881 0.1167 -0.0461 0.3125 -0.4395 -0.0251 0.4876 -0.1637 -0.1195 0.0395 0.4076 0.1500 0.2140 0.3878 0.1460 -0.0056 0.0791 -0.2565 -0.0794 0.1934 0.1726 0.0759 0.2987 -0.4755 0.4428 0.2267 -0.2773 -0.0164 -0.1648 0.0334 -0.1443 0.2661 0.3083 -0.0051 -0.3974 0.0119 -0.2117 -0.1039 -0.4173 -0.1098 0.3844 0.2014 0.0472 0.2511 0.5553 -0.1852 0.0164 -0.0597 -0.0034
score = 22×16
0.5916 0.3959 -0.0283 0.3969 -0.3703 -0.2739 0.1248 -0.1741 -0.2166 -0.3241 0.2682 0.0876 0.2363 0.0172 -0.0428 -0.0409 -0.5745 0.3889 0.7649 0.1216 0.0371 0.1386 -0.2615 -0.2539 0.1048 0.4315 -0.0601 -0.0760 0.1336 -0.0508 -0.0344 -0.0456 -0.5343 0.0964 -0.3965 0.1531 0.5716 -0.0529 0.1151 0.1186 -0.0198 -0.1760 -0.2102 -0.0179 0.1872 0.2434 0.0357 0.0464 0.3658 0.1188 -0.0745 -0.0959 0.3265 0.1423 -0.1210 0.3631 0.6778 -0.0864 0.0085 0.0573 -0.0693 -0.0345 -0.0540 -0.0340 -1.1158 0.1176 0.0473 0.0949 -0.3773 -0.3859 0.1984 -0.1899 0.1312 -0.1197 0.0049 0.0914 -0.1122 -0.0657 0.0826 0.0206 0.2315 -0.2773 0.5269 -0.2486 0.6571 -0.0102 0.3536 -0.1562 -0.0260 0.0068 0.4174 -0.0323 -0.0993 -0.0246 0.0208 0.0606 -0.3856 0.3658 -0.3582 -0.3215 -0.0401 0.6392 0.1356 -0.4788 0.2512 -0.0378 0.2407 0.1402 0.0733 0.0661 0.0123 -0.0255 0.6539 -0.0443 0.4341 -0.0771 0.0258 -0.2478 -0.2313 -0.1191 0.1442 -0.2703 0.0118 -0.2130 0.0784 -0.0916 -0.0221 0.0730 -0.2626 0.5914 0.4794 0.0879 -0.0430 -0.3025 -0.0907 0.3458 0.1498 -0.2271 -0.1490 0.0244 -0.0961 0.0940 -0.0467 -0.0369 -0.2414 -1.2151 0.3395 -0.1321 -0.2833 -0.1413 0.4139 -0.2173 0.0041 0.0395 -0.1649 0.0482 -0.0423 0.1210 -0.1394 -0.0196
latent = 16×1
0.2674 0.2029 0.1497 0.1367 0.1084 0.0874 0.0819 0.0726 0.0523 0.0413
tsquared = 22×1
16.7472 15.6788 16.8153 14.5799 12.7046 16.2672 15.7190 12.3457 11.2392 18.7158
explained = 16×1
20.6980 15.7046 11.5873 10.5788 8.3876 6.7649 6.3364 5.6231 4.0458 3.1998
nurin noor
nurin noor am 31 Mai 2021
Hi Chris!!
Thnak you so much!! It works really well. I mislook, there is a file name pca.m . I did not notice it earlier.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Dimensionality Reduction and Feature Extraction finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by