Problem with the null space
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have the following matrix:
X=[0 0 0 0 0 0 0 0 -146 -80 -258 -134 -11 -215 5 -119;
0 0 0 0 -146 80 258 -16 0 0 0 0 48 -156 64 -60;
0 0 0 0 -11 215 393 119 48 114 -64 60 0 0 0 0;
146 -80 258 254 0 0 0 0 0 0 0 0 183 -21 199 75;
11 -215 123 119 0 0 0 0 -87 -21 -199 -75 0 0 0 0;
-48 -274 64 60 -205 21 199 -75 0 0 0 0 0 0 0 0];
When I calculate the a rational basis of the null space with null (X, 'r') and apply X * null (X, 'r') I get the matrix:
[0 0 0 0 0 0 0 0 -0.0000 0 0;
0 0 0 -0.0000 0.0008 -0.0029 0.0001 0.0003 0.0014 -0.0015 0.0012;
0 0 0.0000 0 0.0048 -0.0005 -0.0005 0.0008 0.0003 0.0001 0.0043;
0 0 0 0 -0.0006 0.0003 -0.0006 0.0006 0.0002 0.0015 -0.0019;
0 0 0 0 0.0001 0.0011 -0.0003 0.0008 0.0002 0.0037 -0.0004;
0.0000 -0.0000 0 0 -0.0007 -0.0025 0.0002 0.0011 0.0020 0.0023 0.0001]
which is clearly not zero. Something is wrong here. On the other hand, if I work with the reduced row echelon form, I do get the zero matrix when computing rref (X) * null (X, 'r'). The RREF matrix has the same null space as the original matrix X. Why does this difference occur in the result?
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!