For loops are too slow

6 Ansichten (letzte 30 Tage)
Joseph
Joseph am 5 Aug. 2013
I have some MATLAB code that was given to me by a coworker. This code contains a three layered for loop. So the code has the basic structure:
for
for
for
The code works but it takes an incredibly long time to execute as the three layered for loop is performing operations on a 40000x4 matrix. I need a way to either bypass the for loops or make them run faster. Someone mentioned to me that I could call Perl in MATLAB to do this but I am unsure how this works. Dose anyone have any ideas. Thank you.
  3 Kommentare
Joseph
Joseph am 7 Aug. 2013
OK my loops look something like this:
for i = 1:1:N
for j = 1:1:norigin
jstart = (j-1)*N + i;
for k = nmin:1:nmax
kend = jstart + k*N;
xmsd(k,1:3) = xmsd(k,1:3) + (md_msd(kend,1:3) - md_msd(jstart,1:3) ).^2;
end
end
end
This is part of a larger m file but the rest of the code works fine. Any thoughts? Thank you for your help.
Matt Kindig
Matt Kindig am 7 Aug. 2013
I think the pre-allocating xmsd would help streamline the code, while still retaining the for loops. Something like this:
xmsd = NaN(nmax, 3);
for i = 1:1:N
for j = 1:1:norigin
jstart = (j-1)*N + i;
for k = nmin:1:nmax
kend = jstart + k*N;
xmsd(k,1:3) = xmsd(k,1:3) + (md_msd(kend,1:3) - md_msd(jstart,1:3) ).^2;
end
end
end

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

dpb
dpb am 7 Aug. 2013
Bearbeitet: dpb am 8 Aug. 2013
for i = 1:1:N
for j = 1:1:norigin
jstart = (j-1)*N + i;
for k = nmin:1:nmax
kend = jstart + k*N;
xmsd(k,1:3) = xmsd(k,1:3) + (md_msd(kend,1:3)-md_msd(jstart,1:3)).^2;
end
end
end
Start in the inner loop...first off
md_msd(jstart,1:3)
is invariant w/ k so replace the indexed expression w/ the equivalent
...
for j = 1:1:norigin
jstart = (j-1)*N + i;
mdj=md_msd(jstart,1:3);
for k = nmin:nmax
kend = jstart + k*N;
xmsd(k,1:3) = xmsd(k,1:3) + (md_msd(kend,1:3)-mdj).^2;
end
end
Then, kend takes on values of jstart+N, jstart+2N, jstart+3N, ... so define an index vector as
kdx=jstart+N:N:jstart+nmax*N;
and then the loop on k can be written as
xmsd(nmin:nmax,1:3) = xmsd(nmin:nmax,1:3) + (md_msd(kdx,1:3)-mdj).^2;
So, after the first loop reduction you're left with
for i = 1:1:N
for j = 1:1:norigin
jstart = (j-1)*N + i;
kdx=jstart+nmin*N:N:jstart+nmax*N;
mdj=md_msd(jstart,1:3);
xmsd(nmin:nmax,1:3) = xmsd(nmin:nmax,1:3) + (md_msd(kdx,1:3)-mdj).^2;
end
end
Now, see what you can do from here... :)
ADDENDUM: Forgot to add -- xmsd IS preallocated, correct????
ERRATUM: "Then, kend takes on values of jstart+N, jstart+2N, jstart+3N, ..."
Actually, the first value is jstart+nmin*N not jstart+N. The increment is N, however, so only the lower bound needs must be corrected.
  1 Kommentar
Joseph
Joseph am 7 Aug. 2013
Thank you very much this helped!

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Matrix Indexing finden Sie in Help Center und File Exchange

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by