Using Multistart with constrainted fmincon
12 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Meikel Vollmers
am 25 Mai 2021
Kommentiert: Meikel Vollmers
am 31 Mai 2021
Hey,
i want to optimize a constrainted function using fmincon. To find the global optimum, i found out that the use of MultiStart is helpful. My function looks like this

Here is my code for the use of fmincon
k = [5,7];
p = [1:4];
a = [pi/11, pi/7, pi/6, pi/3]; %Initial guesses
weights=(1./k.^4);
weights=weights/sum(weights);
fun = @(a) sqrt(sum( weights(:).*( 1 + 2*sum( (-1).^p.*cos(k(:).*a(p)) ,2) ).^2) );
A = [1, -1,0,0;0, 1, -1, 0; 0,0,1,-1]; % a1 < a2 < a3 ..
B = [0,0,0];
Aeq = [];
Beq = [];
lb = [0,0,0,0];
ub = [pi/4,pi/4,pi/4,pi/4];
function [c,ceq] = modindex(a,p) % saved as a seperate script
c = [];
ceq = 4/pi.*( 1 + 2*sum( (-1).^p.*cos(a(p)) ,2 ))-0.6;
end
nlcon = @(a) modindex(a,p); % this is a constraint, implemented as a function
x = fmincon(fun, a, A, B, Aeq, Beq, lb, ub,nlcon)
For the use of fmincon this code works, but now i want to run it with MultiStart. My question is how to respect all of my constraints?
My first try was this
problem = createOptimProblem('fmincon', 'objective', fun, 'x0', [pi/11, pi/7, pi/6, pi/3],'A', [1, -1,0,0;0, 1, -1, 0; 0,0,1,-1],...
'b',[0,0,0], 'Aeq', [], 'beq', [], 'lb', [0,0,0,0], 'ub', [pi/4,pi/4,pi/4,pi/4], 'nonlcon', @(a) modindex(a,p));
ms = MultiStart( 'UseParallel', 'allways', 'StartPointstoRun', 'bounds');
[x,f] = run(ms, problem, 10)
This doesnt work, "No field A exists for PROBLEM structure."
What does my code must look like, that all of the constraints are respected?
Kind regards
0 Kommentare
Akzeptierte Antwort
Matt J
am 25 Mai 2021
problem = createOptimProblem('fmincon', 'objective', fun, 'x0', [pi/11, pi/7, pi/6, pi/3],'Aineq', [1, -1,0,0;0, 1, -1, 0; 0,0,1,-1],...
'bineq',[0,0,0], 'Aeq', [], 'beq', [], 'lb', [0,0,0,0], 'ub', [pi/4,pi/4,pi/4,pi/4], 'nonlcon', @(a) modindex(a,p));
21 Kommentare
Matt J
am 29 Mai 2021
Bearbeitet: Matt J
am 29 Mai 2021
We can prove mathematically that the smallest value m can have is about 0.527393087579050.
First, because the sequence of
are monotonic in [0,
],

Therefore,

So, you cannot consider any m lower than this value.
Also, this is a tight lower bound, achieved for example by choosing
and all other
.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Surrogate Optimization finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!