Eigenvectors of A'*A for non-square matrix A

46 Ansichten (letzte 30 Tage)
Urs Hackstein
Urs Hackstein am 19 Mai 2021
Beantwortet: Jaynik am 1 Mär. 2024
Let A be a non-square matrix. How can we determine the eigenvector associated with the minimum eigenvalue of the matrix A'*A?
In that paper, it is suggested to use "svd"-function, but how exactly?
  1 Kommentar
David Goodmanson
David Goodmanson am 19 Mai 2021
Hi Urs, you can look up the svd on wikipedia and go to 'Relation to eigenvalue decomposition'

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Jaynik
Jaynik am 1 Mär. 2024
Hi,
If you have the matrix A, you can directly use the "eig" function to obtain the eigen vector associated with the minimum eigen value. Following is the code to do the same:
B = A'*A;
[V, D] = eig(B);
[min_eigenvalue, index] = min(diag(D)); % The diagonal of D contains the eigenvalues.
min_eigenvector = V(:, index); % The corresponding column in V is the associated eigenvector.
Alternatively, the "svd" function provides the singular values, which are the square roots of the non-negative eigenvalues of A'*A, and the right singular vectors: Following code can be used for the same:
[U, S, V] = svd(A'*A);
[~, minIndex] = min(diag(S)); % The diagonal elements of S are the square roots of eigenvalues.
min_eigenvector = V(:, minIndex);
You can refer the following documentation to read more about these functions:
Hope this helps!

Kategorien

Mehr zu Linear Algebra finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by