![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/619578/image.jpeg)
How do i use least square method to fit a nonlinear curve to data set below ?
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
maziar
am 16 Mai 2021
Bearbeitet: Scott MacKenzie
am 16 Mai 2021
How do i use least square method to fit a nonlinear curve to data set below ?
p=[40 50 60 80 100]
r=[230.88 243.5 268.34 278.92 280]
0 Kommentare
Akzeptierte Antwort
Scott MacKenzie
am 16 Mai 2021
Bearbeitet: Scott MacKenzie
am 16 Mai 2021
This solution uses polyfit and a log transformation, converting the power-law into a linear equation. There might by an easier way. Perhaps someone else will weigh in with an alternate solution.
p = [40 50 60 80 100];
r = [230.88 243.5 268.34 278.92 280];
% transform r = ap^n into log(r) = log(a) + n log(p)
pLog = log(p);
rLog = log(r);
% do the model fitting and get coefficients
pf = polyfit(pLog, rLog, 1);
b = pf(1);
a = exp(pf(2));
% get squared correlation coefficient
CM = corrcoef(pLog, rLog);
R2 = CM(1,2)^2;
% x/y data for power-law curve from x = 0 to x = 150
x = linspace(0,150);
y = a * x.^b;
% plot curve and scatter data
p1 = plot(x, y);
hold on;
s1 = scatter(p, r, 'filled');
ax = gca;
ax.XLim = [0 150];
ax.YLim = [0 350];
ax.XLabel.String = 'p';
ax.YLabel.String = 'r';
% print equation and line to curve
s = sprintf('%s = %5.3f%s^{%.4f}\n%s^2 = %.4f', '{\itr}', ...
a, '{\itp}', b, '{\itR}', R2);
text(50, 150, s);
line([40, 30], [175, a * 30^b], 'color', 'k');
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/619578/image.jpeg)
Weitere Antworten (1)
Scott MacKenzie
am 16 Mai 2021
Which non-linear curve? Here are a few options for you, for polynomials with orders 1 through 6:
p = [40 50 60 80 100];
r = [230.88 243.5 268.34 278.92 280];
x = -1000:1000;
tiledlayout('flow');
for i=1:6
pf = polyfit(p, r, i); % assume p is x, r is y
y = polyval(pf, x);
nexttile;
plot(x,y);
end
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/619508/image.jpeg)
2 Kommentare
Scott MacKenzie
am 16 Mai 2021
OK, got it. I've posted another answer for the power-law curve you are interested in.
Siehe auch
Kategorien
Mehr zu Interpolation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!