Build model detection after features extraction
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Ilan Moshe
am 10 Mai 2021
Beantwortet: Manas Meena
am 13 Mai 2021
Hello,
I'm trying to code a nose detection function from a IR video.
I extracted 2 frames from the video and foud the features and compared between them.
ref_img = imread('frame_1.png');
ref_img_gray=rgb2gray(ref_img);
ref_pts=detectSURFFeatures(ref_img_gray);
[ref_features,ref_validPts]=extractFeatures(ref_img_gray,ref_pts);
figure; imshow(ref_img);
hold on; plot(ref_pts.selectStrongest(50));
image=imread('frame_50.png');
I=rgb2gray(image);
I_pts=detectSURFFeatures(I);
[I_features,I_validPts]=extractFeatures(I,I_pts);
figure;imshow(image);
hold on; plot(I_pts.selectStrongest(50));
index_pairs=matchFeatures(ref_features,I_features);
ref_matched_pts=ref_validPts(index_pairs(:,1)).Location;
I_matched_pts=I_validPts(index_pairs(:,2)).Location;
close all
figure,showMatchedFeatures(image,ref_img,I_matched_pts,ref_matched_pts);
Here the figure obtained :
What I have to do as a next step ? We can see from the figure that we got the 2 nostrils as features, so how to train a model a got a function that tracks the region for all the frames ?
thank you
0 Kommentare
Akzeptierte Antwort
Manas Meena
am 13 Mai 2021
After SURF feature detection you can select the strongest points of interest (eg. nostrils) and the use the vision.PointTracker function to track these selected points in the video.
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Computer Vision Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!