numarical question interpolating polynomial code

13 Ansichten (letzte 30 Tage)
Mai Mahmood
Mai Mahmood am 10 Mai 2021
Kommentiert: image-pro am 12 Apr. 2022
what are the results of the folowing code based on the table below and how do i plot interpolating polynomial
n = input('Enter n for (n+1) nodes, n: ');
x = zeros(1,n+1);
y = zeros(n+1,n+1);
for i = 0:n
fprintf('Enter x(%d) and f(x(%d)) on separate lines: \n', i, i);
x(i+1) = input(' ');
y(i+1,1) = input(' ');
end
x0 = input('Now enter a point at which to evaluate the polynomial, x = ');
n = size(x,1);
if n == 1
n = size(x,2);
end
for i = 1:n
D(i,1) = y(i);
end
for i = 2:n
for j = 2:i
D(i,j)=(D(i,j-1)-D(i-1,j-1))/(x(i)-x(i-j+1));
end
end
fx0 = D(n,n);
for i = n-1:-1:1
fx0 = fx0*(x0-x(i)) + D(i,i);
end
fprintf('Newtons iterated value: %11.8f \n', fx0)
  2 Kommentare
Rik
Rik am 11 Mai 2021
Bearbeitet: Rik am 11 Mai 2021
I recovered the removed content from the Google cache (something which anyone can do). Editing away your question is very rude. Someone spent time reading your question, understanding your issue, figuring out the solution, and writing an answer. Now you repay that kindness by ensuring that the next person with a similar question can't benefit from this answer.
image-pro
image-pro am 12 Apr. 2022
how can apply above same method on mri image

Melden Sie sich an, um zu kommentieren.

Antworten (1)

DGM
DGM am 10 Mai 2021
% don't waste the user's time and invite error by making them
% retype every single number every time the script runs
x = 1.4:0.2:2.6;
y = [2.151 2.577 3.107 4.015 5.105 6.314 7.015];
x0 = 2.2
n = numel(x);
D = zeros(n);
D(:,1) = y'; % no loop needed
for i = 2:n
for j = 2:i
D(i,j)=(D(i,j-1)-D(i-1,j-1))/(x(i)-x(i-j+1));
end
end
% find val at query point
fx0 = D(n,n);
for k=(n-1):-1:1
fx0 = fx0*(x0-x(k)) + D(k,k);
end
% find poly coefficients to meet points
C = D(n);
for k = n:-1:1
fx0 = fx0*(x0-x(k)) + D(k,k);
C = conv(C,poly(x(k)));
nc = numel(C);
C(nc) = C(nc) + D(k,k);
end
% outputs
fprintf('Newtons iterated value: %11.8f \n', fx0)
clf
plot(x,y); hold on; grid on
xx = linspace(1.4,2.6,50);
plot(xx,polyval(C,xx));
C
  1 Kommentar
DGM
DGM am 10 Mai 2021
The given x from the table is a uniformly increasing vector with a step size of 0.2.
x = 1.4:0.2:2.6
x =
1.4000 1.6000 1.8000 2.0000 2.2000 2.4000 2.6000

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Interpolation finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by