how to calculate the error in Neural Network Back Propagation Network
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
sir,
My doubt regards how to make the minum error rate =0.001
net = newff(input,target,10,{'tansig' 'purelin'},'trainlm');
nsch.trainparam.show=3;
nsch.trainparam.lr=0.1;
nsch.trainparam.mc=0.9;
nsch.trainparam.epochs=100;
nsch.trainparam.goal=1e-30;
net = train(net,input,target);
res=sim(net,input);
0 Kommentare
Akzeptierte Antwort
Greg Heath
am 22 Jul. 2013
Use as many defaults as possible
MSEgoal = 0.01*mean(var(target',1))
MinGrad = MSEgoal/100
net = newff(input,target);
net.trainParam.goal = MSEgoal;
net.trainParam.min_grad = MinGrad;
[ net tr output error ] = train(net, input, target);
For details, search ANSWERS using the search word msegoal
Hope this helps.
Greg
Thank you for formally accepting my answer
Greg
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!