Solving second-order non-linear PDE
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am trying to solve this second order differential equation
Where
θ is a function of space (x) and time (t),
κ is a function of space. This is a known ramp function that starts at 0 and increases to a fixed value.
v is constant and is
A is a constant.
With initial conditions at of ,
I have tried using pdepe but I am struggling to get it into a form that is acceptable. I have also attempted reformating it as an ODE but wasn't able to get any resonable solutions.
Is this a feasible equation that can be solved with Matlabs solvers?
Thanks
2 Kommentare
Aditya Patil
am 12 Mai 2021
Can you verify the following? If v is constant and v = x/t, then theta is function of only t(or x), as x = vt. Similarly k is also function of t.
Antworten (1)
Aditya Patil
am 13 Mai 2021
As per my understanding, the core issue here is with the variable k which needs to be saturated. In other words,
k = min(0, max(C, x))
For some constant C.
As a workaround, you can set the above condition in the odefun parameter of the solver, say ode45.
On a side note, you can also use Simulink. See the attached file for example.
t = [1:0.1:20];
x = sin(t);
input = [t;x]';
sim("differentialExample");
0 Kommentare
Siehe auch
Kategorien
Mehr zu Geometry and Mesh finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!