i have a problem with augmentedimagedatastore how can i solve it?

11 Ansichten (letzte 30 Tage)
Hind Haboubi
Hind Haboubi am 28 Apr. 2021
Beantwortet: Sanyam am 4 Jul. 2022
matlabroot = 'C:\Users\user a\Desktop\Hind\Image C\data101';
DatasetPath = fullfile(matlabroot);
Data = imageDatastore(DatasetPath,'IncludeSubfolders',true,'LabelSource','foldernames');
CountLabel = Data.countEachLabel;
auds = augmentedImageDatastore([224 224],Data);
trainData1 = auds;
[trainData] = auds;
netWidth = 16;
layers = [
imageInputLayer([224 224 3],'Name','input')
convolution2dLayer(3,netWidth,'Padding','same','Name','convInp')
batchNormalizationLayer('Name','BNInp')
reluLayer('Name','reluInp')
convolutionalUnit(netWidth,1,'S1U1')
additionLayer(2,'Name','add11')
reluLayer('Name','relu11')
convolutionalUnit(netWidth,1,'S1U2')
additionLayer(2,'Name','add12')
reluLayer('Name','relu12')
convolutionalUnit(2*netWidth,2,'S2U1')
additionLayer(2,'Name','add21')
reluLayer('Name','relu21')
convolutionalUnit(2*netWidth,1,'S2U2')
additionLayer(2,'Name','add22')
reluLayer('Name','relu22')
convolutionalUnit(4*netWidth,2,'S3U1')
additionLayer(2,'Name','add31')
reluLayer('Name','relu31')
convolutionalUnit(4*netWidth,1,'S3U2')
additionLayer(2,'Name','add32')
reluLayer('Name','relu32')
averagePooling2dLayer(8,'Name','globalPool')
fullyConnectedLayer(2,'Name','fcFinal')
softmaxLayer('Name','softmax')
classificationLayer('Name','classoutput')
];
lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'reluInp','add11/in2');
lgraph = connectLayers(lgraph,'relu11','add12/in2');
skip1 = [
convolution2dLayer(1,2*netWidth,'Stride',2,'Name','skipConv1')
batchNormalizationLayer('Name','skipBN1')];
lgraph = addLayers(lgraph,skip1);
lgraph = connectLayers(lgraph,'relu12','skipConv1');
lgraph = connectLayers(lgraph,'skipBN1','add21/in2');
lgraph = connectLayers(lgraph,'relu21','add22/in2');
skip2 = [
convolution2dLayer(1,4*netWidth,'Stride',2,'Name','skipConv2')
batchNormalizationLayer('Name','skipBN2')];
lgraph = addLayers(lgraph,skip2);
lgraph = connectLayers(lgraph,'relu22','skipConv2');
lgraph = connectLayers(lgraph,'skipBN2','add31/in2');
lgraph = connectLayers(lgraph,'relu31','add32/in2');
options = trainingOptions('sgdm', 'MiniBatchSize',128,'MaxEpochs',10,'InitialLearnRate',1e-4,'ExecutionEnvironment','parallel');
[trainedNet1,traininfo] = trainNetwork(trainData,lgraph,options);
And i get this error:
Error in algo (line 105)
[trainedNet1,traininfo] = trainNetwork(trainData,lgraph,options);
Caused by:
Error using nnet.internal.cnn.DistributedDispatcher/computeInParallel (line 193)
Error detected on worker 2.
Error using augmentedImageDatastore/applyAugmentationPipeline (line 401)
augmentedImageDatastore cannot form MiniBatches of data because input image sizes differ in 3rd dimension. Consider
using 'ColorPreprocessing' option to ensure all augmented images have same number of channels.

Antworten (1)

Sanyam
Sanyam am 4 Jul. 2022
It looks like your data set contains images of different color channels like grayscale, rgb etc. matlab does not allow 2 images of different dimensions in a mini-batch. One of the ways would be to convert all your images in grayscale, this can be done by defining augmented datastore like this:
augmentedImageDatastore(inputSize(1:2),yourData,'ColorPreprocessing','rgb2gray');
It converts all the rgb images to grayscale.
Hope that helps! Thanks!

Kategorien

Mehr zu Particle & Nuclear Physics finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by