
plot3 with implicit domain
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Niklas Kurz
am 27 Apr. 2021
Bearbeitet: Niklas Kurz
am 2 Mai 2021
I'd like to plot f(u,v) = (u,v,sqrt(1-u^2-v^2)) whereas u^2+v^2 <1;
I thought of using plot3 and defining
[u,v] = deal(linspace(-2,2,200));
Thing is, I got to incorporate the implicit condition somehow. Fimplicit3 doesn't help here. I could probalby solve for one of the variables and substitute but that's getting already complex in my head. Is there a handy solution?
0 Kommentare
Akzeptierte Antwort
DGM
am 27 Apr. 2021
Maybe something like this?
n = 50;
u = linspace(-2,2,n);
v = linspace(-2,2,n)';
f = u.^2 - v.^2; % the function
dm = (u.^2 + v.^2)<1; % the domain mask
f(~dm) = NaN; % NaN values don't plot
mesh(u,v,f)
axis equal
colormap(1-ccmap)
title('Math Pringle')

5 Kommentare
DGM
am 28 Apr. 2021
Bearbeitet: DGM
am 28 Apr. 2021
It's easier to understand once you realize what the results from meshgrid look like. Two orthogonal vectors contain the same information that two 2D grids do. The grids are just replicated vectors.
Another way to think of it is to consider what happens when the vectors aren't orthogonal:
x = linspace(-1,1,10);
y = linspace(-1,1,10);
z1 = x.^2 + y.^2; % this is a vector
z2 = x.^2 + y'.^2; % this is a 2D array (due to implicit array expansion)
These two results are related, but it all depends what the goal is. Both z1 and z2 describe a paraboloid. z2 describes the paraboloid over the entire rectangular domain from [-1,-1] to [1,1]. z1 only describes the paraboloid on the diagonal line between said points. One is a surface, where the other is only a curve on said surface.

Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Annotations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!