Fit Normalised Gaussian to data

9 Ansichten (letzte 30 Tage)
Dana Shoukroun
Dana Shoukroun am 27 Apr. 2021
Bearbeitet: Matt J am 28 Apr. 2021
Hi,
I am trying to fit a nromalised Gaussian to my data, using
f(x) = a/sqrt(2pi*sigma^2) * exp (-(x-mu)^2/sigma^2)
However the fit function in matla does not accound for the sigma coefficient. Is there a way to modify the equation of the fit function? I tried to do a manual fit but it doesn't seem to work.
Thanks
  2 Kommentare
Alex Sha
Alex Sha am 28 Apr. 2021
Hi, post out your data please.
Matt J
Matt J am 28 Apr. 2021
I am trying to fit a nromalised Gaussian to my data, using
Shouldn't it be,
f(x) = a/sqrt(2pi*sigma^2) * exp (-0.5*(x-mu)^2/sigma^2)

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Matt J
Matt J am 28 Apr. 2021
Bearbeitet: Matt J am 28 Apr. 2021
You can use,
Example:
%% Synthetic data
fn=@(x,a,mu,sigma) a./sqrt(2*pi*sigma^2) .* exp (-(x(:)-mu).^2/2/sigma^2);
xdata=linspace(-3,9,20).';
ydata=fn(xdata,1,3,2)+0.006*randn(size(xdata));
%% Do the fit
ulb={0,[],[],[]};
[params,resnorm, residual,exitflag,output]=gaussfitn(xdata,ydata,[],ulb,ulb);
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
[A,mu,variance]=deal(params{2:4});
sigma=sqrt(variance);
a=A*sqrt(2*pi*variance);
%% Verify
xs=linspace(min(xdata),max(xdata),1000);
plot(xdata,ydata,'o',xs, fn(xs,a,mu,sigma));shg

Kategorien

Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by