Retime data aggregation for ID
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Gian23
am 26 Apr. 2021
Beantwortet: Eric Sofen
am 4 Mai 2021
Hello everyone,
I'm going to calculate the monthly average of daily temperatures grouping by sensor using retime function. At the moment I'm trying to select each sensor with a loop and then apply the retime function, but I have to calculate six million rows so I would like to avoid a loop to speed up the calculation
I give an example:
Time = datetime({'18-feb-2021';'19-feb-2021';...
'01-mar-2021';'04-mar-2021';'18-feb-2021';...
'19-feb-2021';'01-mar-2021';'04-mar-2021'});
Temp = [56.82;62.72;64.52;63.81;63.45;59.7;60.27;61.32];
Sensor = [12;12;12;12;13;13;13;13];
TT = timetable(Time,Sensor,Temp);
Current code:
uni_sensor = unique(Sensor);
monthly_ds = timetable;
parfor kk = 1:length(uni_sensor)
index_retime = find(TT.Sensor == uni_sensor(kk));
sensor_retime = TT(index_retime,:);
monthly_data = retime(sensor_retime(:,2), 'monthly', 'mean');
data_sensor_retime = array2table(repmat(uni_sensor(kk), size(monthly_data, 1),1), 'VariableNames', "Sensor" );
monthly_sub_id = [monthly_data, data_sensor_retime];
monthly_ds = [monthly_ds; monthly_sub_id];
end
Desired output:
Time = datetime({'feb-2021';'feb-2021';...
'mar-2021';'mar-2021'});
Temp = [59.77;61.575;64.165;60.795];
Sensor = [12;12;13;13];
TT_out = timetable(Time,Sensor,Temp);
Thanks in advance,
Gianluca
0 Kommentare
Akzeptierte Antwort
Marco Riani
am 27 Apr. 2021
I think in this example it is unnecessary to use retime.
I would proceed as follows.
Time1=char(Time);
Time2=Time1(:,4:end);
TT = table(findgroups(string(Time2)),Sensor,Temp);
groupvars={'Sensor' 'Var1'};
datavars='Temp';
groupsummary(TT,groupvars,'mean',datavars)
Instead of using groupsummary it is possible to use grpstats. Please let us know which between groupsummary and grpstats is faster.
Weitere Antworten (1)
Eric Sofen
am 4 Mai 2021
Another approach is to unstack the timetable based on the sensor ID, so you'd have a wide timetable with separate variables temp_12, temp_13, ..., then apply retime to that without a need for grouping. I don't know if it would be faster than Marco's findgroups approach (which is quite clever), and having the sensor IDs embedded in the table variable names may or may not be useful in the long run, but it's yet another way to tackle this problem.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Data Type Identification finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!