Need to solve first order non-linear differential equation
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
I need to solve first order non-linear differential equation to find the wave numbers of a Timoshenko beam for a certain slenderness ratio. I am actually trying to replicate the results of a paper.
Here is the code I have to do this:
%%%%%%
n1=1;
a0=1.875104068867879;
gamm=2.205;
syms a K real;
s = 1/K;
temp = a^2*(gamm^4+1)+s^2*(1+gamm^2);
b = sqrt(-temp+sqrt(temp^2-4*gamm^2*(gamm^2*a^4-a^2*s^2*(1+gamm^2))))/(sqrt(2)*gamm);
syms B real;
F1 = (a^2-B^2)*sin(a)*sinh(B)-a*B*(a^4+a^4*gamm^4+4*gamm^2*a^2*B^2+B^4*gamm^4+B^4)*cos(a)*cosh(B)/((B^2+gamm^2*a^2)*(a^2+gamm^2*B^2))-2*a*B;
dF1da = diff(F1, 'a');
dF1db = diff(F1, 'B');
dbdk = diff(b, 'K');
dbda = diff(b, 'a');
B = b;
dadk1 =eval(-dF1db*dbdk/(dF1da+dF1db*dbda));
f1=@(K,a) eval(dadk1);
%%The left boundary condition is undetermined for 0, so I can only put a %%number close to 0
for m=1:n1
options=odeset('MaxStep',0.01);
[K2,A(:,m)]=ode45(f1,[0.00001 0.4],a_bernoulli(m),options);
end
figure();
hold on;
grid on;
axis([0 0.4 0 12]);
for m=1:n1
plot(K2, A(:,m));
end
%%%%%
thank you
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!