Matrix Dimension Must Agree
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
can somebody help me im new at using matlab
this is my code and the error said that "Matrix Dimension Must Agree"
clc
clear
%%deklarasi variabel
n = 377;
f = 3*(10^9);
c = 3*(10^8);
lambda = c/f;
I = 1;
r = 10*lambda;
theta = [0:0.01:2*(pi)];
k = 2*(pi)/lambda;
l = [(5.1)*lambda : 0.01 : (7.1)*lambda];
%% persamaan pola radiasi
Eteta = (i.*n.*I.*exp(-i.*k.*r)/2.*(pi).*r).*((cos((k.*l/2).*cos(theta))-cos(k.*l/2))./sin(theta));
%% persamaan power pattern
rteta = abs(Eteta);
rtetadB = 10*log10(rteta);
Rteta = rtetadB;
%% Plot 2D variabel
h = figure(1);
polarplot(theta,Rteta);
%% proses normalisasi
Rthetanorm = Rteta - min(Rteta);
%% vektor sudut azimuth
Azimuth = [0:0.01:2*(pi)];
%% magnitude ternormalisasi
Rthetanorm(1,1) = 0;
%% matriks vektor baris sudut azimuth
matrix_pi = [];
%% matriks vektor baris sudut elevasi
matrix_theta = [];
%% matriks vektor baris magnitude ternormalisasi
matrix_Rthetanorm = [];
for i = 1:629
matrix_pi(i,:) = Azimuth(1,:);
matrix_theta(:,i) = theta(1,:);
matrix_Rthetanorm(:,i) = Rthetanorm(1,:);
end
%% koordinat cartesian
x = matrix_Rthetanorm.*cos(matrix_theta).*cos(matrix_pi);
y = matrix_Rthetanorm.*cos(matrix_theta).*sin(matrix_pi);
z = matrix_Rthetanorm.*sin(matrix_theta);
%% Plot 3D dari koordinat cartesian
f = figure(2);
mesh(x,y,z);
colorMap=[[0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0 0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7]', [0 0 0 0 0.1 0.2 0.3 0.9 0.9 0.9 0.9 0.3 0.2 0.1 0 0 0 0]', [0 0 0 0 0.1 0.2 0.3 0.4 0 0 0.4 0.3 0.2 0.1 0 0 0 0]'];
colormap(colorMap);
colorbar
0 Kommentare
Antworten (3)
David Hill
am 17 Apr. 2021
theta = linspace(0,2*(pi),629);
l = linspace((5.1)*lambda,(7.1)*lambda,629);
Azimuth = linspace(0,2*(pi),629);%these all need to be the same size, use linspace
0 Kommentare
Matt J
am 17 Apr. 2021
theta and l do indeed have different lengths, so it is not clear what you are trying to do in your calculation of Eteta.
n = 377;
f = 3*(10^9);
c = 3*(10^8);
lambda = c/f;
I = 1;
r = 10*lambda;
theta = [0:0.01:2*(pi)];
k = 2*(pi)/lambda;
l = [(5.1)*lambda : 0.01 : (7.1)*lambda];
whos theta l
2 Kommentare
Matt J
am 17 Apr. 2021
theta and l do indeed have different lengths, so it is not clear what you are trying to do in your calculation of Eteta.
Walter Roberson
am 17 Apr. 2021
clc
clear
%%deklarasi variabel
n = 377;
f = 3*(10^9);
c = 3*(10^8);
lambda = c/f;
I = 1;
r = 10*lambda;
theta = [0:0.01:2*(pi)];
k = 2*(pi)/lambda;
l = [(5.1)*lambda : 0.01 : (7.1)*lambda].'; %only change
%% persamaan pola radiasi
Eteta = (i.*n.*I.*exp(-i.*k.*r)/2.*(pi).*r).*((cos((k.*l/2).*cos(theta))-cos(k.*l/2))./sin(theta));
%% persamaan power pattern
rteta = abs(Eteta);
rtetadB = 10*log10(rteta);
Rteta = rtetadB;
%% Plot 2D variabel
h = figure(1);
polarplot(theta,Rteta);
%% proses normalisasi
Rthetanorm = Rteta - min(Rteta);
%% vektor sudut azimuth
Azimuth = [0:0.01:2*(pi)];
%% magnitude ternormalisasi
Rthetanorm(1,1) = 0;
%% matriks vektor baris sudut azimuth
matrix_pi = [];
%% matriks vektor baris sudut elevasi
matrix_theta = [];
%% matriks vektor baris magnitude ternormalisasi
matrix_Rthetanorm = [];
for i = 1:629
matrix_pi(i,:) = Azimuth(1,:);
matrix_theta(:,i) = theta(1,:);
matrix_Rthetanorm(:,i) = Rthetanorm(1,:);
end
%% koordinat cartesian
x = matrix_Rthetanorm.*cos(matrix_theta).*cos(matrix_pi);
y = matrix_Rthetanorm.*cos(matrix_theta).*sin(matrix_pi);
z = matrix_Rthetanorm.*sin(matrix_theta);
%% Plot 3D dari koordinat cartesian
f = figure(2);
mesh(x,y,z);
colorMap=[[0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0 0 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7]', [0 0 0 0 0.1 0.2 0.3 0.9 0.9 0.9 0.9 0.3 0.2 0.1 0 0 0 0]', [0 0 0 0 0.1 0.2 0.3 0.4 0 0 0.4 0.3 0.2 0.1 0 0 0 0]'];
colormap(colorMap);
colorbar
2 Kommentare
Walter Roberson
am 18 Apr. 2021
It is already beening made in different figures ? The 2D plot is going into figure 1, and the 3d plot is going into figure 2.
Siehe auch
Kategorien
Mehr zu 2-D and 3-D Plots finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!