How to "invert" integral function?
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello!
I'm trying to calculate the blackbody spectral radiance using planck function:
clc;
close all;
clear all;
% physical constants
h = 6.6260693e-34;
c = 299792485.0;
k = 1.380658e-23;
T = 6500;
f = @(wl) ((((2.0.*h.*c^2)./(wl*1e-6).^5).*(1.0./(exp(((h.*c)./(k.*T.*wl*1e-6)))-1))).*1e-6);
wl_range = [0.1:0.1:8.0];
BB = f(wl_range);
plot(wl_range,BB);
set(gca, 'YScale', 'log');
xlabel('\bf\fontname{arial}\fontsize{14}Wavelength [unm]');
ylabel('\bf\fontname{arial}\fontsize{14}Spectral Radiance [W.sr^{-1}.m^{-2}.{um}^{-1}]');
title('\bf\fontname{arial}\fontsize{14}Blackbody Source','Fontsize',14);

Then I integrated the wavelength range (from 0.1 to 8.0) and I got a power of 3.22e7 [W]
Power = integral(f,0.1,8.0)
Now, my problem!
I would like to do the oposite, just knowing the power value (and the temperature and the interested wavelength range) generate a curve as you can see on the plot above... do you have any solution how I can "invert" the integral?
Thank you in advance.
0 Kommentare
Antworten (1)
David Hill
am 7 Apr. 2021
I might not understand your question completely. If you know the temperature and interested wavelength range, the curve can be generated as you have already done. If you know the power and interested wavelength range, then the temperature can be found.
h = 6.6260693e-34;
c = 299792485.0;
k = 1.380658e-23;
syms T wl;
f =((((2.0*h*c^2)/(wl*1e-6)^5)*(1.0/(exp(((h*c)/(k*T*wl*1e-6)))-1)))*1e-6);
eqn=3.22e7==int(f,wl,.1,8);
t=vpasolve(eqn,T);
0 Kommentare
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!