How to plot trajectory of angles at varying x, y, and z position
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hwajin Choi
am 6 Apr. 2021
Kommentiert: Alan Stevens
am 6 Apr. 2021
Hello,
I want to plot trajectory of angles theta1, theta2, and theta3 vary depending on xyz position in 2D or 3D.
I got the theta1,2 and 3 functions having x, y, and z variables from the last 3 lines at the bottom of the code.
I would appreciate your help.
function [theta1, theta2, theta3] = trajectory(x,y,z)
syms theta1 theta2 theta3 x y z
L = 0.7;
l = 1.3;
wb = 0.2;
sp = 0.08;
wp = 0.02;
up = 0.05;
a = wb - up;
b = sp/2 - (sqrt(3)/2)*wb;
c = wp - wb/2;
eqn1 = 2*L*(y+a)*cos(theta1) + 2*z*L*sin(theta1) + x^2 + y^2 + z^2 + a^2 + L^2 + 2*y*a - l^2 == 0
eqn2 = -L*(sqrt(3)*(x+b)+y+c)*cos(theta2) + 2*z*L*sin(theta2) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 + 2*x*b + 2*y*c - l^2 == 0
eqn3 = L*(sqrt(3)*(x-b)-y-c)*cos(theta3) + 2*z*L*sin(theta3) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 - 2*x*b + 2*y*c - l^2 == 0
theta1=solve(eqn1,theta1)
theta2=solve(eqn2,theta2)
theta3=solve(eqn3,theta3)
theta1 = theta1(2)
theta2 = theta2(2)
theta3 = theta3(2)
0 Kommentare
Akzeptierte Antwort
Alan Stevens
am 6 Apr. 2021
Do you mean something like this (where I've obviously used arbitrary data):
x = linspace(0,1,10);
y = linspace(0,2,10);
z = linspace(0,3,10);
THETA = zeros(3,10);
theta = [0,0,0];
for i = 1:10
theta0 = theta;
THETA(:,i) = fminsearch(@(THETA) trajectory(THETA,x(i),y(i),z(i)), theta0);
end
theta1 = THETA(1,:);
theta2 = THETA(2,:);
theta3 = THETA(3,:);
plot3(theta1,theta2,theta3,'-o'),grid
xlabel('x'),ylabel('y'),zlabel('z')
function F = trajectory(THETA, x,y,z)
theta1 = THETA(1);
theta2 = THETA(2);
theta3 = THETA(3);
L = 0.7;
l = 1.3;
wb = 0.2;
sp = 0.08;
wp = 0.02;
up = 0.05;
a = wb - up;
b = sp/2 - (sqrt(3)/2)*wb;
c = wp - wb/2;
F1 = 2*L*(y+a)*cos(theta1) + 2*z*L*sin(theta1) + x^2 + y^2 + z^2 + a^2 + L^2 + 2*y*a - l^2;
F2 = -L*(sqrt(3)*(x+b)+y+c)*cos(theta2) + 2*z*L*sin(theta2) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 + 2*x*b + 2*y*c - l^2;
F3 = L*(sqrt(3)*(x-b)-y-c)*cos(theta3) + 2*z*L*sin(theta3) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 - 2*x*b + 2*y*c - l^2;
F = norm(F1) + norm(F2) + norm(F3);
end
4 Kommentare
Alan Stevens
am 6 Apr. 2021
Like the following
theta1 = linspace(0,pi/2,20);
theta2 = linspace(0,3*pi/2,20);
theta3 = linspace(0,pi,20);
xyz = zeros(3,10);
xyz(:,1) = [0;0;0];
for i = 1:10
xyz0 = xyz(:,i);
xyz(:,i) = fminsearch(@(xyz) trajectory(xyz,theta1(i),theta2(i),theta3(i)), xyz0);
end
x =xyz(1,:);
y = xyz(2,:);
z = xyz(3,:);
plot3(x,x,z,'-o'),grid
xlabel('x'),ylabel('y'),zlabel('z')
function F = trajectory(xyz, theta1,theta2,theta3)
x = xyz(1);
y = xyz(2);
z = xyz(3);
L = 0.7;
l = 1.3;
wb = 0.2;
sp = 0.08;
wp = 0.02;
up = 0.05;
a = wb - up;
b = sp/2 - (sqrt(3)/2)*wb;
c = wp - wb/2;
F1 = 2*L*(y+a)*cos(theta1) + 2*z*L*sin(theta1) + x^2 + y^2 + z^2 + a^2 + L^2 + 2*y*a - l^2;
F2 = -L*(sqrt(3)*(x+b)+y+c)*cos(theta2) + 2*z*L*sin(theta2) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 + 2*x*b + 2*y*c - l^2;
F3 = L*(sqrt(3)*(x-b)-y-c)*cos(theta3) + 2*z*L*sin(theta3) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 - 2*x*b + 2*y*c - l^2;
F = norm(F1) + norm(F2) + norm(F3);
end
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Logical finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!