How can I convert x, y, and z which are functions of theta to theta function of x, y, and z?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hwajin Choi
am 6 Apr. 2021
Kommentiert: Hwajin Choi
am 6 Apr. 2021
Hello,
I have three equations,
eqn1 = 2*L*(y+a)*cos(theta1) + 2*z*L*sin(theta1) + x^2 + y^2 + z^2 + a^2 + L^2 + 2*y*a - l^2 == 0
eqn2 = -L*(sqrt(3)*(x+b)+y+c)*cos(theta2) + 2*z*L*sin(theta2) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 + 2*x*b + 2*y*c - l^2 == 0
eqn3 = L*(sqrt(3)*(x-b)-y-c)*cos(theta3) + 2*z*L*sin(theta3) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 - 2*x*b + 2*y*c - l^2 == 0
Every value except theta1,theta2, and theta3 are given.
I want to make the three equations as theta functions having x, y, and z variables.
Like a form of theta1 = .... , theta2 = ....., and theta3 = ....
Please let me know what command I can use to make the conversion.
0 Kommentare
Akzeptierte Antwort
DGM
am 6 Apr. 2021
Bearbeitet: DGM
am 6 Apr. 2021
Something like this
syms theta1 theta2 theta3 x y z L l c b a
eqn1 = 2*L*(y+a)*cos(theta1) + 2*z*L*sin(theta1) + x^2 + y^2 + z^2 + a^2 + L^2 + 2*y*a - l^2 == 0
eqn2 = -L*(sqrt(3)*(x+b)+y+c)*cos(theta2) + 2*z*L*sin(theta2) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 + 2*x*b + 2*y*c - l^2 == 0
eqn3 = L*(sqrt(3)*(x-b)-y-c)*cos(theta3) + 2*z*L*sin(theta3) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 - 2*x*b + 2*y*c - l^2 == 0
e1 = theta1==solve(eqn1,theta1)
e2 = theta2==solve(eqn2,theta2)
e3 = theta3==solve(eqn3,theta3)
3 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Startup and Shutdown finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!