How to solve this error: "Error using DAGNetwork/activations (line 245) Incorrectly defined MiniBatchable Datastore. Error in read method of C:\Program Files\MATLAB\R2020b\toolbox\matlab\datastoreio\+matlab\+io\+datastore\@ImageDatastore\read.m"
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi,
I have the following code to extract the features from certain layer of ResNet101 deep learning model. However, after training the network, I am unable to extract the features from the layer specified below.
imds=imageDatastore('C:\Users\Manisha\Test', 'IncludeSubfolders', true, 'LabelSource','foldernames'); % There are two subfolders
tbl = countEachLabel(imds);
minSetCount = min(tbl{:,2});
imds = splitEachLabel(imds, minSetCount, 'randomize');
tbl = countEachLabel(imds)
[imdsTrain, imdsTest] = splitEachLabel(imds, 0.75, 'randomize');
net = resnet101;
numClasses = numel(categories(imds.Labels));
lgraph = layerGraph(net);
newFCLayer = fullyConnectedLayer(numClasses,'Name','new_fc','WeightLearnRateFactor',15,'BiasLearnRateFactor',15);
lgraph = replaceLayer(lgraph,'fc1000',newFCLayer);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_predictions',newClassLayer);
lgraph = replaceLayer(lgraph,'ClassificationLayer_fc1000',newClassLayer);
tbl1 = countEachLabel(imdsTrain)
tbl2 = countEachLabel(imdsTest)
inputSize = net.Layers(1).InputSize;
augimdsTrain = augmentedImageDatastore(inputSize(1:2),imdsTrain);%'DataAugmentation',imageAugmenter);
imageAugmenter = imageDataAugmenter('RandRotation',[-90,90])
augimdsTest = augmentedImageDatastore(inputSize(1:2),imdsTest, 'DataAugmentation',imageAugmenter);
options = trainingOptions('adam', ...
'ExecutionEnvironment','gpu',...
'MiniBatchSize',12, ...
'MaxEpochs',20, ...
'InitialLearnRate',1e-4, ...
'Shuffle','every-epoch', ...
'ValidationFrequency',10, ...
'Verbose',true, ...
'Plots','training-progress');
trainedNet = trainNetwork(augimdsTrain,lgraph,options);
featureLayer = 'pool5'
trainingFeatures = activations(trainedNet, augimdsTrain, featureLayer, ...
'MiniBatchSize', 12, 'OutputAs', 'rows'); % error in this line
label_train = [zeros(tbl1.Count(1),1); ones(tbl1.Count(1),1)];
testFeatures = activations(trainedNet, augimdsTest, featureLayer, ...
'MiniBatchSize', 12, 'OutputAs', 'rows');
label_test = [zeros(tbl2.Count(1),1); ones(tbl2.Count(2),1)];
0 Kommentare
Antworten (1)
Madhav Thakker
am 18 Mai 2021
Hi Manisha,
If you want your custom datastore to be MiniBatchable, the read function MUST output a 2 column table, as noted in this documentation link. https://in.mathworks.com/help/deeplearning/ug/develop-custom-mini-batch-datastore.html#mw_1fbbfc62-d6e2-4e7c-843f-67b467135050
Hope this helps.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!