How can I simplify a symbolic expression?
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Omar B.
am 3 Apr. 2021
Kommentiert: Omar B.
am 5 Apr. 2021
I have computed orthonormal polynomials using Gram-Schmidt process.
I got the following last polynomial,
How do I simplify it? I used simplifyFraction(P10), but still need to simplify.
P10= -(0.000000000000000000000000000000131072*(- 1.5154155839676911728909442039037e+34*x^10 + 8.2506771081142959211403787378745e+34*x^9 - 1.8992595448506783923507009086271e+35*x^8 + 2.3655495760953774286575822531395e+35*x^7 - 1.652095984482293770493859931794e+35*x^6 + 5.3305646291987002322965016172684e+34*x^5 + 7.0517607813983145020182411184835e+33*x^4 - 1.353163416021423788305989629406e+34*x^3 + 5.2851909224935648181523245483154e+33*x^2 - 950949168750141165645381083597780.0*x + 67958017824320084984093552226347.0))/(x^3*(5.0*x - 6.0)^2)
0 Kommentare
Akzeptierte Antwort
Walter Roberson
am 3 Apr. 2021
That is not a polynomial. Notice it has a division in it. It becomes infinite at 0 (triple root) and 1.2 (double root), which is not something that a polynomial with finite coefficients can have happen.
You can expand out the numerator, but that is not much of a change.
S = @(v) sym(v)
syms x
P10= -(S('0.000000000000000000000000000000131072')*(- S('1.5154155839676911728909442039037e+34')*x^10 + S('8.2506771081142959211403787378745e+34')*x^9 - S('1.8992595448506783923507009086271e+35')*x^8 + S('2.3655495760953774286575822531395e+35')*x^7 - S('1.652095984482293770493859931794e+35')*x^6 + S('5.3305646291987002322965016172684e+34')*x^5 + S('7.0517607813983145020182411184835e+33')*x^4 - S('1.353163416021423788305989629406e+34')*x^3 + S('5.2851909224935648181523245483154e+33')*x^2 - S('950949168750141165645381083597780.0')*x + S('67958017824320084984093552226347.0')))/(x^3*(S('5.0')*x - S('6.0'))^2)
[N,D] = numden(P10);
PS = simplify(expand(N))/D
4 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Linear Algebra finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

