how to solve PDE with derivative boundary conditions ?
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Mohammad Adeeb
am 1 Apr. 2021
Kommentiert: darova
am 3 Apr. 2021
hey all
im trying to solve PDE with derivative boundary condition , so i tend to use the imaginary node method , could i have another way to solve it without any built in function
this is the qustion:
𝜕𝑇𝜕𝑡=𝜕2𝑇𝜕𝑥2+𝑞(𝑥) (1)
With 𝑞(𝑥)=100sin(𝜋𝑥) (2)
1)
𝑇(𝑥,0)=0 (3)
2)
𝜕𝑇𝜕𝑡(0,𝑡)=𝑇(0,𝑡)−10 (4)
3)
𝜕𝑇𝜕𝑡(1,𝑡)=10−𝑇(1,𝑡) (5)
clear all;
close all;
clc;
%% Demo program for parapolic pde
dt = 0.25;
dx = 0.1*dt;
alpha=1;
t = 0:dt:15;
x = 0:dx:4;
q_x=(100*sin(pi*x));
N = length(x)-1;
T=[]; %Dynamic size
T(1,:) = zeros(1,5) ; %Initial condition
for j=1:length(t)-1
T(1,N-1) = T(j+1,N) + (2*dx*(T(j+1,N+1)-10));
for i=2:N
T(j+1,i) = T(j,i)+alpha*(dt/(dx^2))*(T(j,i+1)+ T(j,i-1)-2*T(j,i))+q_x;
end
T(2,N+2) = T(j+1,N) + (2*dx*(10-T(j+1,N+1)));
end
mesh(t,x,T)
colorbar;
the code isn't evaluated , what is the proplem?
3 Kommentare
Akzeptierte Antwort
darova
am 2 Apr. 2021
Try these corrections
T = zeros(length(t),length(x));
for j=1:length(t)-1
T(j+1,1) = T(j,1) + dt*(T(j,1)-10);
T(j+1,N) = T(j,N) + dt*(10-T(j,N));
for i=2:N-1 % changed
T(j+1,i) = T(j,i)+alpha*(dt/(dx^2))*(T(j,i+1)+ T(j,i-1)-2*T(j,i)) + q_x(i); % note: q_x(i)
end
end
mesh(t,x,T)
2 Kommentare
darova
am 3 Apr. 2021
I made some change sto your code. Some notes:
- should be larger than ( should be small )
- should be small too
- i changed boundary conditions 𝜕𝑇𝜕𝑡(0,𝑡)=𝑇(0,𝑡)−10 and 𝜕𝑇𝜕𝑡(1,𝑡)=10−𝑇(1,𝑡)
clc,clear
%% Demo program for parapolic pde
dt = 0.25;
dx = 5*dt;
alpha=1;
t = 0:dt:5;
x = 0:dx:20;
q_x = sin(pi*x/max(x));
N = length(x);
r = alpha*dt/dx^2;
T = zeros(length(t),length(x));
for j=1:length(t)-1
T(j+1,1) = T(j,1) + dt*(T(j,1)-1/10); % changed these
T(j+1,N) = T(j,N) + dt*(1/10-T(j,N));
for i=2:N-1 % changed
T(j+1,i) = T(j,i)+r*diff(T(j,i-1:i+1),2) + q_x(i); % note: q_x(i)
end
end
surf(x,t,T)
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu PDE Solvers finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!