how to solve PDE with derivative boundary conditions ?

4 Ansichten (letzte 30 Tage)
Mohammad Adeeb
Mohammad Adeeb am 1 Apr. 2021
Kommentiert: darova am 3 Apr. 2021
hey all
im trying to solve PDE with derivative boundary condition , so i tend to use the imaginary node method , could i have another way to solve it without any built in function
this is the qustion:
𝜕𝑇𝜕𝑡=𝜕2𝑇𝜕𝑥2+𝑞(𝑥) (1)
With 𝑞(𝑥)=100sin(𝜋𝑥) (2)
1)
𝑇(𝑥,0)=0 (3)
2)
𝜕𝑇𝜕𝑡(0,𝑡)=𝑇(0,𝑡)−10 (4)
3)
𝜕𝑇𝜕𝑡(1,𝑡)=10−𝑇(1,𝑡) (5)
clear all;
close all;
clc;
%% Demo program for parapolic pde
dt = 0.25;
dx = 0.1*dt;
alpha=1;
t = 0:dt:15;
x = 0:dx:4;
q_x=(100*sin(pi*x));
N = length(x)-1;
T=[]; %Dynamic size
T(1,:) = zeros(1,5) ; %Initial condition
for j=1:length(t)-1
T(1,N-1) = T(j+1,N) + (2*dx*(T(j+1,N+1)-10));
for i=2:N
T(j+1,i) = T(j,i)+alpha*(dt/(dx^2))*(T(j,i+1)+ T(j,i-1)-2*T(j,i))+q_x;
end
T(2,N+2) = T(j+1,N) + (2*dx*(10-T(j+1,N+1)));
end
mesh(t,x,T)
colorbar;
the code isn't evaluated , what is the proplem?

Akzeptierte Antwort

darova
darova am 2 Apr. 2021
Try these corrections
T = zeros(length(t),length(x));
for j=1:length(t)-1
T(j+1,1) = T(j,1) + dt*(T(j,1)-10);
T(j+1,N) = T(j,N) + dt*(10-T(j,N));
for i=2:N-1 % changed
T(j+1,i) = T(j,i)+alpha*(dt/(dx^2))*(T(j,i+1)+ T(j,i-1)-2*T(j,i)) + q_x(i); % note: q_x(i)
end
end
mesh(t,x,T)
  2 Kommentare
Mohammad Adeeb
Mohammad Adeeb am 2 Apr. 2021
Bearbeitet: Mohammad Adeeb am 2 Apr. 2021
it's worked but the mesh result is totally wrong
darova
darova am 3 Apr. 2021
I made some change sto your code. Some notes:
  • should be larger than ( should be small )
  • should be small too
  • i changed boundary conditions 𝜕𝑇𝜕𝑡(0,𝑡)=𝑇(0,𝑡)−10 and 𝜕𝑇𝜕𝑡(1,𝑡)=10−𝑇(1,𝑡)
clc,clear
%% Demo program for parapolic pde
dt = 0.25;
dx = 5*dt;
alpha=1;
t = 0:dt:5;
x = 0:dx:20;
q_x = sin(pi*x/max(x));
N = length(x);
r = alpha*dt/dx^2;
T = zeros(length(t),length(x));
for j=1:length(t)-1
T(j+1,1) = T(j,1) + dt*(T(j,1)-1/10); % changed these
T(j+1,N) = T(j,N) + dt*(1/10-T(j,N));
for i=2:N-1 % changed
T(j+1,i) = T(j,i)+r*diff(T(j,i-1:i+1),2) + q_x(i); % note: q_x(i)
end
end
surf(x,t,T)

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Produkte


Version

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by