Kernel function interpretation problem

2 Ansichten (letzte 30 Tage)
Alessandro Ruda am 31 Mär. 2021
Bearbeitet: Aditya Patil am 5 Apr. 2021
Dear MatLab comunity,
I have a distribution that I fitted with the Kernel function. See below.
A1 = load('trajrmsd_I_1_1_c.txt');
A1_RMSD = A1(:,2);
figure
[f,xi] = ksdensity(A1_RMSD);
plot(xi,f,'color','r','linewidth',2);
The point is that in the y axis i get values higher than 1. Is that normal? How is it rationalized?
All the best,
Alessandro
0 Kommentare-2 ältere Kommentare anzeigen-2 ältere Kommentare ausblenden

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Aditya Patil am 5 Apr. 2021
Bearbeitet: Aditya Patil am 5 Apr. 2021
As ksdensity returns the probability density, it can be higher than one. The integral of this function, which is the total probability, will be 1.
See the following code for example,
A1 = load('trajrmsd_I_1_1_c.txt');
A1_RMSD = A1(:,2);
[f,xi] = ksdensity(A1_RMSD);
plot(xi,f);
fitobj = fit(xi', f', 'linearinterp');
integralfun = @(x)(fun(x, fitobj));
integral(integralfun, 0, 2.5) % this gives integral over entire range
function y = fun(x, fitobj)
y = feval(fitobj, x)';
y = max(0, y);
end
To consider an analogous example, if you consider a rectangle with unit area, it's height can be made arbitrarily large by making the width smaller than 1 for e.g., height = 5, and width = 0.2. The area will however remain 1.
0 Kommentare-2 ältere Kommentare anzeigen-2 ältere Kommentare ausblenden

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Kernel Distribution finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by