How do I freqency shift a signal by a fractional amount using IFFT and FFT?

24 Ansichten (letzte 30 Tage)
Victoria
Victoria am 11 Jun. 2013
Verschoben: Matt J am 23 Jun. 2025
Let me preface this with: I am an extreme novice when it comes to FFTs.
I have a signal vector x of length 1200. To shift the frequency of the signal I am doing the following:
y=IFFT(x);
SHIFT=1;
t=[1:1200]*2*pi/1200;
for j=1:1200
mult(j)=exp(-i*SHIFT*t(j));
z=mult.*y;
end
w=real(fft(z));
When SHIFT is an integer I get what I am looking for in w, which is the signal x shifted by the value of SHIFT. However, when SHIFT is fractional the vector w looks like some combination between a shifted x and its derivative.
My question is: what do I do to shift x by a fractional amount using FFTs and IFFTs?
Thanks,
Victoria

Antworten (2)

Matt J
Matt J am 11 Jun. 2013
You would do something like this
N=length(y);
mult = exp(-1i*2*pi/N*(0:N-1)*SHIFT);
w=ifft((fft(y).*mult ),'symmetric')
  5 Kommentare
rashi
rashi am 3 Aug. 2020
but the output for w,w1 and w2 are different, will those be not same?
Matt J
Matt J am 3 Aug. 2020
No, the first version does not use linear interpolation and so will be different from the others.

Melden Sie sich an, um zu kommentieren.


Duncan Carlsmith
Duncan Carlsmith am 21 Jun. 2025
analytic_segment = hilbert(segment); % Complex analytic signal
shifted_segment = real(analytic_segment .* exp(1j*2*pi*f_shift*t));
  2 Kommentare
Paul
Paul am 22 Jun. 2025
Hi Duncan,
Can you illustrate this approach with a concrete example?
Duncan Carlsmith
Duncan Carlsmith am 22 Jun. 2025
Verschoben: Matt J am 23 Jun. 2025
%% Frequency-Shift Demo with Synthetic Audio
% This script creates a 1-s synthetic audio signal consisting of four
% sinusoids (1, 2, 3, 4 kHz) of decreasing amplitude plus Gaussian noise,
% shifts it up by 500 Hz, and compares the spectra and waveforms.
% -------------------------------------------------------------------------
% Parameters
% -------------------------------------------------------------------------
fs = 44100; % Sampling rate (Hz)
duration = 1.0; % Signal length (s)
f_shift = 500; % Desired frequency up-shift (Hz)
% -------------------------------------------------------------------------
% Construct synthetic signal (column vector)
% -------------------------------------------------------------------------
t = (0:1/fs:duration-1/fs).'; % Time axis
amp = [1.0 0.8 0.6 0.4]; % Amplitudes
freqs = [1000 2000 3000 4000]; % Frequencies (Hz)
segment = zeros(size(t));
for k = 1:numel(freqs)
segment = segment + amp(k)*sin(2*pi*freqs(k)*t);
end
segment = segment + 0.2*randn(size(t)); % Additive white Gaussian noise
% -------------------------------------------------------------------------
% Play original audio
% -------------------------------------------------------------------------
soundsc(segment,fs);
pause(2); % Brief pause
% -------------------------------------------------------------------------
% Frequency-shift via analytic signal
% -------------------------------------------------------------------------
analytic_segment = hilbert(segment); % Analytic (complex) signal
shifted_segment = real(analytic_segment ...
.* exp(1j*2*pi*f_shift*t));
% -------------------------------------------------------------------------
% Play shifted audio
% -------------------------------------------------------------------------
soundsc(shifted_segment,fs);
pause(2);
% -------------------------------------------------------------------------
% Power spectra (overlaid)
% -------------------------------------------------------------------------
% 1 Hz frequency resolution for clear peak separation
[P_orig,F] = pspectrum(segment, fs,'FrequencyResolution',3);
[P_shift,~] = pspectrum(shifted_segment,fs,'FrequencyResolution',3);
figure;
plot(F,10*log10(P_orig),'b','LineWidth',1.2,'DisplayName','Original');
hold on;
plot(F,10*log10(P_shift),'r','LineWidth',1.2,'DisplayName','Shifted');
xlim([0 6000]);
xlabel('Frequency (Hz)');
ylabel('Power/Frequency (dB/Hz)');
title('Power Spectrum: Original vs. Frequency-Shifted');
legend('Location','best');
grid on;
ylim([-60,0])
% -------------------------------------------------------------------------
% Time-domain waveforms (overlaid)
% -------------------------------------------------------------------------
figure;
plot(t,segment, 'b','DisplayName','Original'); hold on;
plot(t,shifted_segment,'r','DisplayName','Shifted');
xlabel('Time (s)');
ylabel('Amplitude');
title('Waveforms: Original vs. Frequency-Shifted');
legend('Location','best');
grid on;
% Uncomment the next line to zoom into the first 10 ms:
xlim([0 0.01]);

Melden Sie sich an, um zu kommentieren.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by