How to integrate an array properly in matlab
9 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello, I am trying to finish a m-file to find the inductance in 2 coils. I have finished the program to the point of integration. I believe the problem is the integration of an array. I have tried various methods such as int, trapz, and quad but all of these seem to be returning an error. I am not sure as to whether I am implementing the commands wrong or rather I have a bad equation. Here is my code
% This program finds mutual inductance for TET coil system %
% Using Neumann's definition %
% M = sqrt(ap*as)*(1/(2*pi))*(int(((cos(theta)-(d/as)*((cos(psi)*cos(phi))-(sin(psi)*sin(phi)*cos(theta))))/(R^(3/2)))*f,phi,0,2*pi))
%
% Increment angles
%psi = [0:1:90];
%theta = 0:1:90;
%phi = 0:1:90;
psi = input('Enter psi value in degrees \n')
theta = input('Enter theta value in degrees \n')
phi = input('Enter phi value in degrees \n')
% Arguments
%dim = 0:2*pi
h = input('Enter h value in mm \n')
ap = input('Enter ap value in mm \n')
as = sqrt((ap^2)-(h^2))
delta = h/ap
alpha = as/ap
d = h.*tan(phi)
Ra = (1-(cos(phi).*cos(phi).*sin(theta).*sin(theta)))
Rb = ((2)*(d/as)).*((sin(psi).*sin(phi))-(cos(psi).*cos(phi).*cos(theta)))
Rc = ((d.^2)/(as.^2))
R = sqrt(Ra+Rb+Rc)
z = delta-(alpha*sin(theta)*cos(phi))
%kprime_2 = (((1-(alpha.*R)).^2)+z.^2)/(((1+(alpha.*R)).^2+z.^2))
kprime_2a = ((1-(alpha.*R)).^2)+z.^2
kprime_2b = ((1+(alpha.*R)).^2)+z.^2
kprime_2 = kprime_2a./kprime_2b
f = -0.011*(log(kprime_2))-0.0021
integrand = ((cos(theta)-(d/as).*((cos(psi).*cos(phi))-
(sin(psi).*sin(phi).*cos(theta))))/(R.^(3/2))).*f
%integrand1 = double(int(((cos(theta)-(d/as).*((cos(psi).*cos(phi))-(sin(psi).*sin(phi).*cos(theta))))./(R.^(3/2))).*f,phi,0,2.*pi))
%integrand = double(integrand);
stuff = trapz(phi,integrand)
M = sqrt(ap.*as).*(1/(2*pi)).*stuff
I am setting psi and phi to 0 and setting theta to 0:10:90. H is usually 3 and ap is usuall 6. This gives me different error messages for each method of integration I use.
Any help would be appreciated. Thanks.
5 Kommentare
Akzeptierte Antwort
Andrew Newell
am 6 Jun. 2013
Bearbeitet: Andrew Newell
am 6 Jun. 2013
Assuming you are trying to integrate over theta, a good approach is to create a function for your integrand like this:
function y = inductanceIntegrand(theta,psi,phi,h,ap)
as = sqrt((ap^2)-(h^2));
delta = h/ap;
alpha = as/ap;
d = h.*tan(phi);
Ra = (1-(cos(phi).*cos(phi).*sin(theta).*sin(theta)));
Rb = ((2)*(d/as)).*((sin(psi).*sin(phi))-(cos(psi).*cos(phi).*cos(theta)));
Rc = ((d.^2)/(as.^2));
R = sqrt(Ra+Rb+Rc);
z = delta-(alpha*sin(theta).*cos(phi));
kprime_2a = ((1-(alpha.*R)).^2)+z.^2;
kprime_2b = ((1+(alpha.*R)).^2)+z.^2;
kprime_2 = kprime_2a./kprime_2b;
f = -0.011*(log(kprime_2))-0.0021;
y = sqrt(ap.*as).*(1/(2*pi)).*((cos(theta)-(d/as).*((cos(psi).*cos(phi))-(sin(psi).*sin(phi).*cos(theta))))/(R.^(3/2))).*f;
psi = 0;
phi = 0;
h = 3;
ap = 6;
f = @(theta) inductanceIntegrand(theta,psi,phi,h,ap);
M = quadl(f,0,2*pi);
disp(M)
-4.5074e-04
If you're integrating over phi, just change the argument of f to phi and provide a value for theta.
3 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differentiation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!