How to train complex [64 1] matrices in deeplearning nw
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
juseoung lee
am 24 Mär. 2021
Beantwortet: Srivardhan Gadila
am 29 Mär. 2021
I am trying to train a complex numbered matrix with a fullyconnected layer,
but I can't read the value of the imaginary axis from the input layer. Is there a way?
1) The method I thought of was dividing real and imag to learn the input layer into two
, but I can't find such a method well..
0 Kommentare
Akzeptierte Antwort
Srivardhan Gadila
am 29 Mär. 2021
You can refer to the example: Modulation Classification with Deep Learning, specifically the pretrained network and "Transform Complex Signals to Real Arrays" section.
The following code might help you:
inputSize = [64 1 2];
numSamples = 128;
numClasses = 4;
%% Generate random data for training the network.
trainData = randn([inputSize numSamples]);
trainLabels = categorical(randi([0 numClasses-1], numSamples,1));
%% Create a network.
layers = [
imageInputLayer(inputSize,'Name','input')
convolution2dLayer([3 1],16,'Padding','same','Name','conv_1')
batchNormalizationLayer('Name','BN_1')
reluLayer('Name','relu_1')
fullyConnectedLayer(10,'Name','fc1')
fullyConnectedLayer(numClasses,'Name','fc2')
softmaxLayer('Name','softmax')
classificationLayer('Name','classOutput')];
lgraph = layerGraph(layers);
analyzeNetwork(lgraph);
%% Define training options.
options = trainingOptions('adam', ...
'InitialLearnRate',0.005, ...
'LearnRateSchedule','piecewise',...
'MaxEpochs',100, ...
'MiniBatchSize',128, ...
'Verbose',1, ...
'Plots','training-progress');
%% Train the network.
net = trainNetwork(trainData,trainLabels,layers,options);
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Image Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!