How can i use CNN?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have a 3D feature set [10x2000x9, 10x2000x9,10x2000x9......................10x2000x9] and corrosponding ground truth in 4 class like [0,1,2,3]. Means for each 10x2000x9 their will be a ground truth from 0 to 3. How can i use CNN for this to classify in multiclass?
1 Kommentar
Antworten (1)
Srivardhan Gadila
am 28 Mär. 2021
You can refer to Create Simple Deep Learning Network for Classification, Training a Model from Scratch, Get Started with Deep Learning Toolbox & Deep Learning Toolbox. Also the following code might give you some idea to get started quickly:
inputSize = [10 2000 9];
numSamples = 128;
numClasses = 4;
%% Generate random data for training the network.
trainData = randn([inputSize numSamples]);
trainLabels = categorical(randi([0 numClasses-1], numSamples,1));
%% Create a network.
layers = [
imageInputLayer(inputSize,'Name','input')
convolution2dLayer(3,16,'Padding','same','Name','conv_1')
batchNormalizationLayer('Name','BN_1')
reluLayer('Name','relu_1')
fullyConnectedLayer(10,'Name','fc1')
fullyConnectedLayer(numClasses,'Name','fc2')
softmaxLayer('Name','softmax')
classificationLayer('Name','classOutput')];
lgraph = layerGraph(layers);
%% Define training options.
options = trainingOptions('adam', ...
'InitialLearnRate',0.005, ...
'LearnRateSchedule','piecewise',...
'MaxEpochs',100, ...
'MiniBatchSize',128, ...
'Verbose',1, ...
'Plots','training-progress');
%% Train the network.
net = trainNetwork(trainData,trainLabels,layers,options);
0 Kommentare
Siehe auch
Kategorien
Mehr zu Recognition, Object Detection, and Semantic Segmentation finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!