Approximating the integral over hemisphere domain with sample data

1 Ansicht (letzte 30 Tage)
Yu-Chen
Yu-Chen am 3 Jun. 2013
The integral part of the rendering equation performs an integral over a hemisphere range (theta = 0~PI/2 and phi = 0~2PI). I can generate samples that carry the value of corresponding integrand with this code:
n = 10; rho_s = 0.5; rho_d = 0.5;
light_phi = degtorad(30); light_theta = degtorad(60); [lx ly lz] = sph2cart(light_phi, light_theta, 1);
refDir = cat(3, -lx, -ly, lz); normal = cat(3, 0, 0, 1);
[sample_phi sample_theta] = meshgrid(0:12:360, 0:3:90); [sample_x sample_y sample_z] = sph2cart(degtorad(sample_phi), degtorad(sample_theta), 1); viewDir = cat(3, sample_x, sample_y, sample_z);
dotRL = sum(bsxfun(@times, viewDir, refDir), 3); dotRL = max(dotRL, 0);
brdf_s = rho_s*(n+2)*(dotRL.^n)/(2*pi); brdf_d = rho_d/pi; brdf = brdf_s + brdf_d;
x = sample_x.*brdf; y = sample_y.*brdf; z = sample_z.*brdf; mesh(x, y, z); line([0 lx],[0 ly],[0 lz]);
axis equal; axis vis3d; xlim([-1 1]); ylim([-1 1]); zlim([0 1]);
The question I face now is how to do the integral or approximation with these samples point ?
Thanks.

Antworten (0)

Kategorien

Mehr zu MATLAB finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by