Solving an equation with log
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Rafi B
am 20 Mär. 2021
Kommentiert: Walter Roberson
am 20 Mär. 2021
Hi i'm fairly new to MATLAB and encounter a problem regarding this equation y=c(x)^m
where m is the gradient of points:
(x,1y1)=(100,50)
(x2,y2)=(1000,10)
This is the eq i put on MATLAB:
Eq = log10(Y2) == log10(C1*X2^(m)); %Equation
C1 = vpasolve (Eq, C1)
It seems that i get C far from my hand-drawn answer
How to solve C?
0 Kommentare
Akzeptierte Antwort
Walter Roberson
am 20 Mär. 2021
Looks okay to me.
format long g
X1 = 100; Y1 = 50;
X2 = 1000; Y2 = 10;
m = (Y2-Y1)./(X2-X1);
syms C1
Eq = log10(Y2) == log10(C1*X2^(m)); %Equation
C1sol = solve(Eq,C1)
vpa(C1sol)
%log10(Y2) == log10(C1*X2^m) implies
%Y2 == C1*X2^m implies
C1_numeric = Y2/(X2^m)
4 Kommentare
Walter Roberson
am 20 Mär. 2021
Yes, giving you an equation of the form A=B^m with known A and B, which you can use to find m easily.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Assumptions finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!