Solving an equation with log

1 Ansicht (letzte 30 Tage)
Rafi B
Rafi B am 20 Mär. 2021
Kommentiert: Walter Roberson am 20 Mär. 2021
Hi i'm fairly new to MATLAB and encounter a problem regarding this equation y=c(x)^m
where m is the gradient of points:
(x,1y1)=(100,50)
(x2,y2)=(1000,10)
This is the eq i put on MATLAB:
Eq = log10(Y2) == log10(C1*X2^(m)); %Equation
C1 = vpasolve (Eq, C1)
It seems that i get C far from my hand-drawn answer
How to solve C?

Akzeptierte Antwort

Walter Roberson
Walter Roberson am 20 Mär. 2021
Looks okay to me.
format long g
X1 = 100; Y1 = 50;
X2 = 1000; Y2 = 10;
m = (Y2-Y1)./(X2-X1);
syms C1
Eq = log10(Y2) == log10(C1*X2^(m)); %Equation
C1sol = solve(Eq,C1)
C1sol = 
vpa(C1sol)
ans = 
13.593563908785257310765717430783
%log10(Y2) == log10(C1*X2^m) implies
%Y2 == C1*X2^m implies
C1_numeric = Y2/(X2^m)
C1_numeric =
13.5935639087853
  4 Kommentare
Rafi B
Rafi B am 20 Mär. 2021
quick question, on eqn3 wouldn't it just cross the c value off?
Walter Roberson
Walter Roberson am 20 Mär. 2021
Yes, giving you an equation of the form A=B^m with known A and B, which you can use to find m easily.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by