identity matrix nth order

1 Ansicht (letzte 30 Tage)
Jasneet Singh
Jasneet Singh am 19 Mär. 2021
Beantwortet: VBBV am 27 Feb. 2022
n = [1:1:20];
M=eye(n).*0.02
its not working !! i got an error that says eye() can't draw n dimensional arrays..can it be corrected ?
if not is there any other alternative to this?

Antworten (2)

ANKUR KUMAR
ANKUR KUMAR am 19 Mär. 2021
Bearbeitet: ANKUR KUMAR am 19 Mär. 2021
n=20;
eye(n) % identity matrix of order 20
eye(randi(50,1,1)) % identity matrix of a random order generated by randi

VBBV
VBBV am 27 Feb. 2022
n = [1:1:20];
for k = 1:length(n)
M{k}=eye(n(k)).*0.02;
X = sprintf('Identity matrix of order %0d',k);
disp(X)
I = M{k}
end
Identity matrix of order 1
I = 0.0200
Identity matrix of order 2
I = 2×2
0.0200 0 0 0.0200
Identity matrix of order 3
I = 3×3
0.0200 0 0 0 0.0200 0 0 0 0.0200
Identity matrix of order 4
I = 4×4
0.0200 0 0 0 0 0.0200 0 0 0 0 0.0200 0 0 0 0 0.0200
Identity matrix of order 5
I = 5×5
0.0200 0 0 0 0 0 0.0200 0 0 0 0 0 0.0200 0 0 0 0 0 0.0200 0 0 0 0 0 0.0200
Identity matrix of order 6
I = 6×6
0.0200 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0.0200
Identity matrix of order 7
I = 7×7
0.0200 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0.0200
Identity matrix of order 8
I = 8×8
0.0200 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0.0200
Identity matrix of order 9
I = 9×9
0.0200 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0.0200
Identity matrix of order 10
I = 10×10
0.0200 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0.0200
Identity matrix of order 11
I = 11×11
0.0200 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0.0200 0
Identity matrix of order 12
I = 12×12
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0
Identity matrix of order 13
I = 13×13
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0
Identity matrix of order 14
I = 14×14
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0
Identity matrix of order 15
I = 15×15
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0
Identity matrix of order 16
I = 16×16
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0
Identity matrix of order 17
I = 17×17
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0
Identity matrix of order 18
I = 18×18
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0
Identity matrix of order 19
I = 19×19
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0
Identity matrix of order 20
I = 20×20
0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0 0 0 0 0
Try using a loop

Kategorien

Mehr zu Operating on Diagonal Matrices finden Sie in Help Center und File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by