Plot data from while loop
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Michael Jacobson
am 18 Mär. 2021
Kommentiert: Mathieu NOE
am 22 Mär. 2021
I've written an algorithm that can approximate the root of a multivariable function using the Newton-Raphon method. The algorithm, given 2 multivariable functions and 2 guess values, runs through an equation multiple times, returning the approximate root and error each iteration. I am trying to plot the error against the iteration. However, when i do so, i get a blank plot. How would I approach plotting this error data (eax and eay [found in part 3]) from the while loop against the iteration number?
Thank you
Below is the code:
disp(['<strong>Method: </strong>' 'Newton-Raphson for Simultaneous Equations'])
n = input('Desired Accuracy: ');
e = 0.5*(10^(2-n));
syms x y
Data_Vector = [f1 f2 diff(f1,x) diff(f1,y) diff(f2,x) diff(f2,y)];
Iteration = 0;
x=input('x_guess: ');
y=input('y_guess: ');
while (1)
disp('------------')
Iteration = Iteration + 1;
disp(['<strong>Iteration: </strong>' num2str(Iteration) ])
%Part 1: Initializing
x;
y;
i = Iteration - 1;
disp([ '(x_' num2str(i) ',' 'y_' num2str(i) ')' ' = ' '(' num2str(x) ',' num2str(y) ')'])
Data_Vector_Num1 = subs(Data_Vector);
Data_Vector_Num2 = double(Data_Vector_Num1);
%Part 2: Evaluation
%Part 2A: X - Root
xr = x - (Data_Vector_Num2(1)*Data_Vector_Num2(6)-Data_Vector_Num2(2)*Data_Vector_Num2(4))/(Data_Vector_Num2(3)*Data_Vector_Num2(6)-Data_Vector_Num2(4)*Data_Vector_Num2(5));
%Part 2B: Y - Root
yr = y - (Data_Vector_Num2(2)*Data_Vector_Num2(3)-Data_Vector_Num2(1)*Data_Vector_Num2(5))/(Data_Vector_Num2(3)*Data_Vector_Num2(6)-Data_Vector_Num2(4)*Data_Vector_Num2(5));
%Part 3: Approximate Error
eax = abs((xr-x)/xr)*100;
eay = abs((yr-y)/yr)*100;
%Part 4: Resetting X & Y
x=xr;
y=yr;
%Part 5: Root Check
f1_rc_a = subs(f1);
f1_rc_b = double(f1_rc_a);
f2_rc_a = subs(f2);
f2_rc_b = double(f2_rc_a);
disp([ '(x_' num2str(Iteration) ',' 'y_' num2str(Iteration) ')' ' = ' '(' num2str(x) ',' num2str(y) ')'])
disp(['Value of Root: ' 'f1(' num2str(x) ',' num2str(y) ')' ' = ' num2str(f1_rc_b) ' || ' 'f2(' num2str(x) ',' num2str(y) ')' ' = ' num2str(f2_rc_b)])
disp(['Approximate Percent Error: ' 'x:' num2str(eax) '%' ' y:' num2str(eay) '%'])
if eax < e && eay < e
break,end
end
%Part 6: Summary
disp('=======================')
disp('<strong>Summary of Results: </strong>')
disp(['<strong>Method: </strong>' 'Newton-Raphson for Simultaneous Equations'])
disp(['<strong>Number of Iterations:</strong> ' num2str(Iteration)])
disp('<strong>Approximate Root: </strong>')
[round(x,n,'significant') round(y,n,'significant')]
disp(['<strong>Value of Root: </strong>' 'f1(' num2str(x) ',' num2str(y) ')' ' = ' num2str(f1_rc_b) ' ' 'f2(' num2str(x) ',' num2str(y) ')' ' = ' num2str(f2_rc_b)])
disp([ '<strong>Accuracy: </strong>' num2str((n)) ' Significant Figures'])
Here, I'll attatch a sample output:
Method: Newton-Raphson for Simultaneous Equations
Desired Accuracy: 4
x_guess: 1.5
y_guess: 3.5
------------
Iteration: 1
(x_0,y_0) = (1.5,3.5)
(x_1,y_1) = (2.036,2.8439)
Value of Root: f1(2.036,2.8439) = -0.064375 || f2(2.036,2.8439) = -4.7562
Approximate Percent Error: x:26.3272% y:23.0715%
------------
Iteration: 2
(x_1,y_1) = (2.036,2.8439)
(x_2,y_2) = (1.9987,3.0023)
Value of Root: f1(1.9987,3.0023) = -0.0045199 || f2(1.9987,3.0023) = 0.049571
Approximate Percent Error: x:1.8676% y:5.2764%
------------
Iteration: 3
(x_2,y_2) = (1.9987,3.0023)
(x_3,y_3) = (2,3)
Value of Root: f1(2,3) = -1.2861e-06 || f2(2,3) = -2.214e-05
Approximate Percent Error: x:0.064969% y:0.076305%
------------
Iteration: 4
(x_3,y_3) = (2,3)
(x_4,y_4) = (2,3)
Value of Root: f1(2,3) = 1.501e-13 || f2(2,3) = 2.7769e-12
Approximate Percent Error: x:8.0619e-07% y:1.9554e-05%
=======================
Summary of Results:
Method: Newton-Raphson for Simultaneous Equations
Number of Iterations: 4
Approximate Root:
ans =
2 3
Value of Root: f1(2,3) = 1.501e-13 f2(2,3) = 2.7769e-12
Accuracy: 4 Significant Figures
0 Kommentare
Akzeptierte Antwort
Mathieu NOE
am 18 Mär. 2021
hello
you have to index the error variables with Iteration
otherwise you're overwritting each time (and you get only a scalar at the end - that's why the plot is blank)
eax(Iteration) = abs((xr-x)/xr)*100;
eay(Iteration) = abs((yr-y)/yr)*100;
2 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!