generating noisy data to play with in DSP
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello,is there a way in matlab to create a signal put a high frequency noise on it and take samples from it to play with DSP FIR filter later.
Like the example samples showsn bellow.
Is there a tool in matlab that can generate such a thing?
Thanks.
// Test data of a 10kHz cosine wave
float32_t testData[128] =
{
0,9.6592579,5,-7.0710678,-8.6602535,2.5881906,10,2.5881906,-8.6602535,
-7.0710678,5,9.6592579,6.1232342e-15,-9.6592579,-5,7.0710678,8.6602535,
-2.5881906,-10,-2.5881906,8.6602535,7.0710678,-5,-9.6592579,-1.2246468e-14,
9.6592579,5,-7.0710678,-8.6602535,2.5881906,10,2.5881906,-8.6602535,
-7.0710678,5,9.6592579,-1.7157435e-14,-9.6592579,-5,7.0710678,8.6602535,
-2.5881906,-10,-2.5881906,8.6602535,7.0710678,-5,-9.6592579,-2.4492937e-14,
9.6592579,5,-7.0710678,-8.6602535,2.5881906,10,2.5881906,-8.6602535,
-7.0710678,5,9.6592579,-4.9109666e-15,-9.6592579,-5,7.0710678,8.6602535,
-2.5881906,-10,-2.5881906,8.6602535,7.0710678,-5,-9.6592579,3.4314870e-14,
9.6592579,5,-7.0710678,-8.6602535,2.5881906,10,2.5881906,-8.6602535,
-7.0710678,5,9.6592579,-6.3718772e-14,-9.6592579,-5,7.0710678,8.6602535,
-2.5881906,-10,-2.5881906,8.6602535,7.0710678,-5,-9.6592579,-4.8985874e-14,
9.6592579,5,-7.0710678,-8.6602535,2.5881906,10,2.5881906,-8.6602535,
-7.0710678,5,9.6592579,-2.6463513e-13,-9.6592579,-5,7.0710678,8.6602535,
-2.5881906,-10,-2.5881906,8.6602535,7.0710678,-5,-9.6592579,9.8219332e-15,
9.6592579,5,-7.0710678,-8.6602535,2.5881906,10,2.5881906
};
0 Kommentare
Antworten (1)
Omega
am 2 Aug. 2024
Hi Fima,
Yes, MATLAB has several tools and functions that can help you generate a signal, add high-frequency noise, and take samples for DSP (Digital Signal Processing) applications. Below is an example of how you can generate a 10 kHz cosine wave, add high-frequency noise to it, and then take samples from it. You can adjust the parameters and the downsample factor as needed for your specific application.
% Parameters
Fs = 100e3; % Sampling frequency (100 kHz)
duration = 0.01; % Duration of the signal (10 ms)
t = 0:1/Fs:duration-1/Fs; % Time vector of 10 ms
f = 10e3; % Frequency of the cosine wave (10 kHz)
f_noise = 50e3; % Frequency of the noise (50 kHz)
noise_amplitude = 1; % Amplitude of the noise
% Generate the 10 kHz cosine wave
signal = cos(2*pi*f*t);
% Generate high-frequency noise
noise = noise_amplitude * cos(2*pi*f_noise*t);
% Add noise to the signal
noisy_signal = signal + noise;
% Plot the signals
figure;
subplot(3,1,1);
plot(t, signal);
title('Original 10 kHz Cosine Wave');
xlabel('Time (s)');
ylabel('Amplitude');
subplot(3,1,2);
plot(t, noise);
title('High-Frequency Noise (50 kHz)');
xlabel('Time (s)');
ylabel('Amplitude');
subplot(3,1,3);
plot(t, noisy_signal);
title('Noisy Signal');
xlabel('Time (s)');
ylabel('Amplitude');
% Downsample the signal using resample (e.g., by a factor of 10)
downsample_factor = 10;
downsampled_signal = resample(noisy_signal, 1, downsample_factor);
downsampled_time = linspace(0, duration, length(downsampled_signal));
% Plot the downsampled signal
figure;
plot(downsampled_time, downsampled_signal, '-o');
title('Downsampled Noisy Signal');
xlabel('Time (s)');
ylabel('Amplitude');
% Save downsampled signal to a variable (e.g., for later use in FIR filtering)
testData = downsampled_signal;
% Display the first few samples
disp('First few samples of the downsampled noisy signal:');
disp(testData(1:10));
0 Kommentare
Siehe auch
Kategorien
Mehr zu Get Started with DSP System Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!