'pca' vs 'svd' or 'eig' functions
12 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Pranav Aggarwal
am 16 Mär. 2021
Kommentiert: Pranav Aggarwal
am 18 Mär. 2021
Hi,
I am trying to generate the principal components from a set of data. However, i get an entirely different result when i use the 'pca' function compared to the 'eig' function. The 'eig' function gives the same results as the 'svd' function for my data.
I am using the raw data as input into the 'pca' function.
For 'eig' - I am calculating the correlation matrix and then using that as input into the 'eig' function.
I am very puzzled on why i get different results and would be grateful for your help! Code below:
testmat = rand(20,5);
testcorrelMat = corr(testmat);
testeig = eig(testcorrelMat);
testsvd = svd(testcorrelMat);
[testcoeff, ~, testlatent] = pca(testmat);
[sort(testsvd), sort(testeig), sort(testlatent)]
0 Kommentare
Akzeptierte Antwort
the cyclist
am 16 Mär. 2021
You will get the same result from pca() if you standardize the input data first:
rng default
testmat = rand(20,5);
% Standardize the data
testmat = (testmat - mean(testmat))./std(testmat);
testcorrelMat = corr(testmat);
testeig = eig(testcorrelMat);
testsvd = svd(testcorrelMat);
[testcoeff, ~, testlatent] = pca(testmat);
[sort(testsvd), sort(testeig), sort(testlatent)]
2 Kommentare
Steven Lord
am 16 Mär. 2021
To normalize the data you can use the normalize function to normalize by 'zscore' (which is the default normalization method.)
rng default
testmat = rand(20,5);
% Standardize the data
testmat = normalize(testmat);
testcorrelMat = corr(testmat);
testeig = eig(testcorrelMat);
testsvd = svd(testcorrelMat);
[testcoeff, ~, testlatent] = pca(testmat);
results = [sort(testsvd), sort(testeig), sort(testlatent)]
format longg
results - results(:, 1)
Looks pretty good to me.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Dimensionality Reduction and Feature Extraction finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!