In fourier series, why there should be finite maxima and minima (dirichlet conditions)
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
why not infinte number of maxima and minima?
0 Kommentare
Antworten (1)
Walter Roberson
am 14 Mär. 2021
This is not a question about MATLAB. Please use more appropriate resources to investigate fourier theory.
Dirichlet conditions. The function f satisfies the Dirichlet conditions on the interval (–T/2, + T/2) if,(i)
f is bounded on the interval (–T/2, + T/2), and
(ii)
the interval (–T/2, + T/2) may be divided into a finite number of sub-intervals in each of which the derivative f′ exists throughout and does not change sign.
===
If you had an infinite number of maxima or minima then you would not be able to satisfy that there are a finite number of sub-intervals in each of which the derivative does not change sign. Each maxima or minima requires a sign change for the derivative.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Fourier Analysis and Filtering finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!