Determining the optimal number of clusters in Kmeans technique
38 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I have a matrix like "A". I want to cluster its data using K-Means method.
A=[45 58 59
46 76 53
57 65 71
40 55 59
25 35 42
34 51 74
46 90 53
46 63 60
33 50 78
53 57 60
31 28 72
49 49 53
76 88 82
34 100 198
35 35 35];
I used the following command to cluster data.
[Data_clustred, c]= kmeans(A,num_cluster);
by the way, knowing the optimal number of cluster is neccessary to me.
Is there any criteria that determines the optimal numbers of clusters? if so, How can I write its programm.
any help whould be appreciated. Thanks in advance.
0 Kommentare
Akzeptierte Antwort
Weitere Antworten (2)
kira
am 2 Mai 2019
old question, but I just found a way myself looking at matlab documentation:
klist=2:n;%the number of clusters you want to try
myfunc = @(X,K)(kmeans(X, K));
eva = evalclusters(net.IW{1},myfunc,'CalinskiHarabasz','klist',klist)
classes=kmeans(net.IW{1},eva.OptimalK);
0 Kommentare
Siehe auch
Kategorien
Mehr zu Cluster Analysis and Anomaly Detection finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!